DOI QR코드

DOI QR Code

Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

  • Kim, Ki Jung (Department of Physiology, Augusta University) ;
  • Jeun, Seung Hyun (Department of Pharmacology, College of Medicine, The Catholic University of Korea) ;
  • Sung, Ki-Wug (Department of Pharmacology, College of Medicine, The Catholic University of Korea)
  • Received : 2016.09.08
  • Accepted : 2016.12.18
  • Published : 2017.03.01

Abstract

Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine $(5-HT)_3$ receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine ($1{\sim}300{\mu}M$) resulted in a concentration-dependent reduction in peak amplitude of currents induced by $3{\mu}m$ of 5-HT for an $IC_{50}$ value of $28.2{\pm}3.6{\mu}M$ with a Hill coefficient of $1.2{\pm}0.1$. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, $5-HT_3$-mediated currents evoked by 1 mM dopamine, a partial $5-HT_3$ receptor agonist, were inhibited by lamotrigine co-application. The $EC_{50}$ of 5-HT for $5-HT_3$ receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate $5-HT_3$ receptor desensitization, inhibited $5-HT_3$ receptor currents in a concentration-dependent manner. The deactivation of $5-HT_3$ receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of $5-HT_3$ receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the $5-HT_3$ receptor currents. These results indicate that lamotrigine inhibits $5-HT_3$-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

Keywords

References

  1. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083-1152. https://doi.org/10.1016/S0028-3908(99)00010-6
  2. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71:533-554. https://doi.org/10.1016/S0091-3057(01)00746-8
  3. Thompson AJ, Lummis SC. The $5-HT_3$ receptor as a therapeutic target. Expert Opin Ther Targets. 2007;11:527-540. https://doi.org/10.1517/14728222.11.4.527
  4. Walstab J, Rappold G, Niesler B. 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther. 2010;128:146-169. https://doi.org/10.1016/j.pharmthera.2010.07.001
  5. Barnes NM, Hales TG, Lummis SC, Peters JA. The $5-HT_3$ receptor--the relationship between structure and function. Neuropharmacology. 2009;56:273-284. https://doi.org/10.1016/j.neuropharm.2008.08.003
  6. Thompson AJ. Recent developments in $5-HT_3$ receptor pharmacology. Trends Pharmacol Sci. 2013;34:100-109. https://doi.org/10.1016/j.tips.2012.12.002
  7. Walstab J, Rappold G, Niesler B. 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther. 2010;128:146-169. https://doi.org/10.1016/j.pharmthera.2010.07.001
  8. Jones BJ, Blackburn TP. The medical benefit of 5-HT research. Pharmacol Biochem Behav. 2002;71:555-568. https://doi.org/10.1016/S0091-3057(01)00745-6
  9. Harmer CJ, Reid CB, Ray MK, Goodwin GM, Cowen PJ. 5HT(3) antagonism abolishes the emotion potentiated startle effect in humans. Psychopharmacology (Berl). 2006;186:18-24. https://doi.org/10.1007/s00213-006-0337-z
  10. Brunello N, Masotto C, Steardo L, Markstein R, Racagni G. New insights into the biology of schizophrenia through the mechanism of action of clozapine. Neuropsychopharmacology. 1995;13:177-213. https://doi.org/10.1016/0893-133X(95)00068-O
  11. Wada Y, Shiraishi J, Nakamura M, Koshino Y. Effects of the $5-HT_3$ receptor agonist 1-(m-chlorophenyl)-biguanide in the rat kindling model of epilepsy. Brain Res. 1997;759:313-316. https://doi.org/10.1016/S0006-8993(97)00366-1
  12. Nichols RA, Mollard P. Direct observation of serotonin $5-HT_3$ receptor-induced increases in calcium levels in individual brain nerve terminals. J Neurochem. 1996;67:581-592.
  13. Michel K, Zeller F, Langer R, Nekarda H, Kruger D, Dover TJ, Brady CA, Barnes NM, Schemann M. Serotonin excites neurons in the human submucous plexus via $5-HT_3$ receptors. Gastroenterology. 2005;128:1317-1326. https://doi.org/10.1053/j.gastro.2005.02.005
  14. Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the Eigth Eilat Conference (EILAT VIII). Epilepsy Res. 2007;73:1-52. https://doi.org/10.1016/j.eplepsyres.2006.10.008
  15. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia. 1999;40:1471-1483. https://doi.org/10.1111/j.1528-1157.1999.tb02029.x
  16. Valles AS, Garbus I, Barrantes FJ. Lamotrigine is an open-channel blocker of the nicotinic acetylcholine receptor. Neuroreport. 2007; 18:45-50. https://doi.org/10.1097/01.wnr.0000246323.66438.94
  17. Zheng C, Yang K, Liu Q, Wang MY, Shen J, Valles AS, Lukas RJ, Barrantes FJ, Wu J. The anticonvulsive drug lamotrigine blocks neuronal {alpha}4{beta}2 nicotinic acetylcholine receptors. J Pharmacol Exp Ther. 2010;335: 401-408. https://doi.org/10.1124/jpet.110.171108
  18. Ahmad S, Fowler LJ, Whitton PS. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res. 2005;63:141-149. https://doi.org/10.1016/j.eplepsyres.2005.02.002
  19. Ahmad S, Fowler LJ, Whitton PS. Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:1-8. https://doi.org/10.1007/s00210-004-1008-4
  20. Southam E, Kirkby D, Higgins GA, Hagan RM. Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. Eur J Pharmacol. 1998;358:19-24. https://doi.org/10.1016/S0014-2999(98)00580-9
  21. Reid JG, Gitlin MJ, Altshuler LL. Lamotrigine in psychiatric disorders. J Clin Psychiatry. 2013;74:675-684. https://doi.org/10.4088/JCP.12r08046
  22. Large CH, Webster EL, Goff DC. The potential role of lamotrigine in schizophrenia. Psychopharmacology (Berl). 2005;181:415-436. https://doi.org/10.1007/s00213-005-0020-9
  23. Li QZ, Cho HS, Jeun SH, Kim KJ, Choi SJ, Sung KW. Effects of grape seed proanthocyanidin on 5-hydroxytryptamine(3) receptors in NCB-20 neuroblastoma cells. Biol Pharm Bull. 2011;34:1109-1115. https://doi.org/10.1248/bpb.34.1109
  24. Yang HS, Kim SY, Choi SJ, Kim KJ, Kim ON, Lee SB, Sung KW. Effect of 5-hydroxyindole on ethanol potentiation of 5-hydroxytryptamine $(5-HT)_3$ receptor-activated ion current in NCB-20 neuroblastoma cells. Neurosci Lett. 2003;338:72-76. https://doi.org/10.1016/S0304-3940(02)01336-8
  25. Zhou Q, Verdoorn TA, Lovinger DM. Alcohols potentiate the function of $5-HT_3$ receptor-channels on NCB-20 neuroblastoma cells by favouring and stabilizing the open channel state. J Physiol. 1998;507:335-352. https://doi.org/10.1111/j.1469-7793.1998.335bt.x
  26. Lovinger DM, Sung KW, Zhou Q. Ethanol and trichloroethanol alter gating of $5-HT_3$ receptor-channels in NCB-20 neuroblastoma cells. Neuropharmacology. 2000;39:561-570. https://doi.org/10.1016/S0028-3908(99)00164-1
  27. Jones MV, Westbrook GL. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron. 1995;15:181-191. https://doi.org/10.1016/0896-6273(95)90075-6
  28. Neijt HC, Plomp JJ, Vijverberg HP. Kinetics of the membrane current mediated by serotonin $5-HT_3$ receptors in cultured mouse neuroblastoma cells. J Physiol. 1989;411:257-269. https://doi.org/10.1113/jphysiol.1989.sp017572
  29. van Hooft JA, van der Haar E, Vijverberg HP. Allosteric potentiation of the $5-HT_3$ receptor-mediated ion current in N1E-115 neuroblastoma cells by 5-hydroxyindole and analogues. Neuropharmacology. 1997;36:649-653. https://doi.org/10.1016/S0028-3908(97)00045-2
  30. Gunthorpe MJ, Lummis SC. Diltiazem causes open channel block of recombinant $5-HT_3$ receptors. J Physiol. 1999;519:713-722. https://doi.org/10.1111/j.1469-7793.1999.0713n.x
  31. Maryadale JO, Patricia EH, Peter HD, Kristin JR. The merck index . 15th ed. Cambridge: The Royal Society of Chemistry; 2013. 5400 p.
  32. Choi JS, Choi BH, Ahn HS, Kim MJ, Rhie DJ, Yoon SH, Min DS, Jo YH, Kim MS, Sung KW, Hahn SJ. Mechanism of block by fluoxetine of 5-hydroxytryptamine3 ($5-HT_3$)-mediated currents in NCB-20 neuroblastoma cells. Biochem Pharmacol. 2003;66:2125-2132. https://doi.org/10.1016/j.bcp.2003.08.012
  33. Funahashi M, Mitoh Y, Matsuo R. Activation of presynaptic $5-HT_3$ receptors facilitates glutamatergic synaptic inputs to area postrema neurons in rat brain slices. Methods Find Exp Clin Pharmacol. 2004;26:615-622. https://doi.org/10.1358/mf.2004.26.8.863726
  34. Liu W, Thielen RJ, McBride WJ. Effects of repeated daily treatments with a $5-HT_3$ receptor antagonist on dopamine neurotransmission and functional activity of $5-HT_3$ receptors within the nucleus accumbens of Wistar rats. Pharmacol Biochem Behav. 2006;84:370-377. https://doi.org/10.1016/j.pbb.2006.06.002
  35. Turner TJ, Mokler DJ, Luebke JI. Calcium influx through presynaptic $5-HT_3$ receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience. 2004;129:703-718. https://doi.org/10.1016/j.neuroscience.2004.08.020
  36. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci. 2010;30:16796-16808. https://doi.org/10.1523/JNEUROSCI.1869-10.2010
  37. Thompson AJ, Sullivan NL, Lummis SC. Characterization of $5-HT_3$ receptor mutations identified in schizophrenic patients. J Mol Neurosci. 2006;30:273-281. https://doi.org/10.1385/JMN:30:3:273
  38. Thompson AJ, Lummis SC. $5-HT_3$ receptors. Curr Pharm Des. 2006;12:3615-3630. https://doi.org/10.2174/138161206778522029
  39. Xie X, Lancaster B, Peakman T, Garthwaite J. Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA $Na^{+}$ channels and with native $Na^{+}$ channels in rat hippocampal neurones. Pflugers Arch. 1995;430:437-446. https://doi.org/10.1007/BF00373920
  40. Lee CY, Fu WM, Chen CC, Su MJ, Liou HH. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia. 2008;49:888-897. https://doi.org/10.1111/j.1528-1167.2007.01526.x
  41. Mirza NR, Bright JL, Stanhope KJ, Wyatt A, Harrington NR. Lamotrigine has an anxiolytic-like profile in the rat conditioned emotional response test of anxiety: a potential role for sodium channels? Psychopharmacology (Berl). 2005;180:159-168. https://doi.org/10.1007/s00213-005-2146-1

Cited by

  1. Lamotrigine in the Prevention of Migraine With Aura: A Narrative Review vol.59, pp.8, 2017, https://doi.org/10.1111/head.13615
  2. Schiff-Based Metal Complexes of Lamotrigine: Design, Synthesis, Characterization, and Biological Evaluation vol.6, pp.11, 2017, https://doi.org/10.1021/acsomega.1c00027
  3. Antiepileptic drugs and serotonin syndrome- A systematic review of case series and case reports vol.91, pp.None, 2017, https://doi.org/10.1016/j.seizure.2021.06.004