DOI QR코드

DOI QR Code

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

  • Yoon, Mi Na (Department of Physiology, College of Medicine, Konyang University) ;
  • Kim, Dong Kwan (Department of Physiology, College of Medicine, Konyang University) ;
  • Kim, Se Hoon (Department of Physiology, College of Medicine, Konyang University) ;
  • Park, Hyung Seo (Department of Physiology, College of Medicine, Konyang University)
  • Received : 2016.11.21
  • Accepted : 2016.12.13
  • Published : 2017.03.01

Abstract

Intracellular calcium ($Ca^{2+}$) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide ($H_2O_2$) on intracellular $Ca^{2+}$ accumulation in mouse pancreatic acinar cells. Perfusion of $H_2O_2$ at $300{\mu}M$ resulted in additional elevation of intracellular $Ca^{2+}$ levels and termination of oscillatory $Ca^{2+}$ signals induced by carbamylcholine (CCh) in the presence of normal extracellular $Ca^{2+}$. Antioxidants, catalase or DTT, completely prevented $H_2O_2$-induced additional $Ca^{2+}$ increase and termination of $Ca^{2+}$ oscillation. In $Ca^{2+}$-free medium, $H_2O_2$ still enhanced CCh-induced intracellular $Ca^{2+}$ levels and thapsigargin (TG) mimicked $H_2O_2$-induced cytosolic $Ca^{2+}$ increase. Furthermore, $H_2O_2$-induced elevation of intracellular $Ca^{2+}$ levels was abolished under sarco/endoplasmic reticulum $Ca^{2+}$ ATPase-inactivated condition by TG pretreatment with CCh. $H_2O_2$ at $300{\mu}M$ failed to affect store-operated $Ca^{2+}$ entry or $Ca^{2+}$ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, failed to attenuate $H_2O_2$-induced intracellular $Ca^{2+}$ elevation. These results provide evidence that excessive generation of $H_2O_2$ in pathological conditions could accumulate intracellular $Ca^{2+}$ by attenuating refilling of internal $Ca^{2+}$ stores rather than by inhibiting $Ca^{2+}$ extrusion to extracellular fluid or enhancing $Ca^{2+}$ mobilization from extracellular medium in mouse pancreatic acinar cells.

Keywords

References

  1. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335-344. https://doi.org/10.1113/jphysiol.2003.049478
  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  3. Gardner AM, Xu FH, Fady C, Jacoby FJ, Duffey DC, Tu Y, Lichtenstein A. Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic Biol Med. 1997;22:73-83. https://doi.org/10.1016/S0891-5849(96)00235-3
  4. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239-247. https://doi.org/10.1038/35041687
  5. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74:139-162. https://doi.org/10.1152/physrev.1994.74.1.139
  6. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. https://doi.org/10.1152/physrev.00018.2001
  7. Galan C, Jardin I, Dionisio N, Salido G, Rosado JA. Role of oxidant scavengers in the prevention of $Ca^{2+}$ homeostasis disorders. Molecules. 2010;15:7167-7187. https://doi.org/10.3390/molecules15107167
  8. Mukherjee R, Criddle DN, Gukovskaya A, Pandol S, Petersen OH, Sutton R. Mitochondrial injury in pancreatitis. Cell Calcium. 2008;44:14-23. https://doi.org/10.1016/j.ceca.2007.11.013
  9. Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium. 2016;60:108-114. https://doi.org/10.1016/j.ceca.2016.03.004
  10. Zheng Y, Shen X. H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells. Redox Rep. 2005;10:29-36. https://doi.org/10.1179/135100005X21660
  11. Sato T, Kaneko YK, Sawatani T, Noguchi A, Ishikawa T. Obligatory role of early $Ca^{2+}$ responses in $H_2O_2$-induced ${\beta}$-cell apoptosis. Biol Pharm Bull . 2015;38:1599-1605. https://doi.org/10.1248/bpb.b15-00396
  12. Altinkilic S, Naziroglu M, Uguz AC, Ozcankaya R. Fish oil and antipsychotic drug risperidone modulate oxidative stress in PC12 cell membranes through regulation of cytosolic calcium ion release and antioxidant system. J Membr Biol. 2010;235:211-218. https://doi.org/10.1007/s00232-010-9267-0
  13. Grupe M, Myers G, Penner R, Fleig A. Activation of store-operated $I_{CRAC}$ by hydrogen peroxide. Cell Calcium. 2010;48:1-9. https://doi.org/10.1016/j.ceca.2010.05.005
  14. Bari MR, Akbar S, Eweida M, Kuhn FJ, Gustafsson AJ, Luckhoff A, Islam MS. $H_2O_2$-induced $Ca^{2+}$ influx and its inhibition by N-(pamylcinnamoyl) anthranilic acid in the beta-cells: involvement of TRPM2 channels. J Cell Mol Med. 2009;13:3260-3267. https://doi.org/10.1111/j.1582-4934.2009.00737.x
  15. Giambelluca MS, Gende OA. Hydrogen peroxide activates calcium influx in human neutrophils. Mol Cell Biochem. 2008;309:151-156. https://doi.org/10.1007/s11010-007-9653-9
  16. Redondo PC, Jardin I, Hernandez-Cruz JM, Pariente JA, Salido GM, Rosado JA. Hydrogen peroxide and peroxynitrite enhance $Ca^{2+}$ mobilization and aggregation in platelets from type 2 diabetic patients. Biochem Biophys Res Commun. 2005;333:794-802. https://doi.org/10.1016/j.bbrc.2005.05.178
  17. Zaidi A, Michaelis ML. Effects of reactive oxygen species on brain synaptic plasma membrane $Ca^{2+}$-ATPase. Free Radic Biol Med. 1999;27:810-821. https://doi.org/10.1016/S0891-5849(99)00128-8
  18. Bruce JI, Elliott AC. Oxidant-impaired intracellular $Ca^{2+}$ signaling in pancreatic acinar cells: role of the plasma membrane $Ca^{2+}$-ATPase. Am J Physiol Cell Physiol. 2007;293:C938-950. https://doi.org/10.1152/ajpcell.00582.2006
  19. Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium. 2014;55:282-289. https://doi.org/10.1016/j.ceca.2014.01.003
  20. Williams JA. Regulation of acinar cell function in the pancreas. Curr Opin Gastroenterol . 2010;26:478-483. https://doi.org/10.1097/MOG.0b013e32833d11c6
  21. Yule DI, Straub SV, Bruce JI. Modulation of $Ca^{2+}$ oscillations by phosphorylation of Ins(1,4,5)P3 receptors. Biochem Soc Trans. 2003;31:954-957. https://doi.org/10.1042/bst0310954
  22. Giovannucci DR, Groblewski GE, Sneyd J, Yule DI. Targeted phosphorylation of inositol 1,4,5-trisphosphate receptors selectively inhibits localized $Ca^{2+}$ release and shapes oscillatory $Ca^{2+}$ signals. J Biol Chem. 2000;275:33704-33711. https://doi.org/10.1074/jbc.M004278200
  23. Putney JW. The physiological function of store-operated calcium entry. Neurochem Res. 2011;36:1157-1165. https://doi.org/10.1007/s11064-010-0383-0
  24. Gerasimenko JV, Gerasimenko OV, Petersen OH. The role of $Ca^{2+}$ in the pathophysiology of pancreatitis. J Physiol. 2014;592:269-280. https://doi.org/10.1113/jphysiol.2013.261784
  25. Sutton R, Criddle D, Raraty MG, Tepikin A, Neoptolemos JP, Petersen OH. Signal transduction, calcium and acute pancreatitis. Pancreatology. 2003;3:497-505. https://doi.org/10.1159/000075581
  26. Perez S, Pereda J, Sabater L, Sastre J. Redox signaling in acute pancreatitis. Redox Biol. 2015;5:1-14. https://doi.org/10.1016/j.redox.2015.01.014
  27. Ward JB, Sutton R, Jenkins SA, Petersen OH. Progressive disruption of acinar cell calcium signaling is an early feature of cerulein-induced pancreatitis in mice. Gastroenterology. 1996;111:481-491. https://doi.org/10.1053/gast.1996.v111.pm8690215
  28. Criddle DN. Reactive oxygen species, $Ca^{2+}$ stores and acute pancreatitis; a step closer to therapy? Cell Calcium. 2016;60:180-189. https://doi.org/10.1016/j.ceca.2016.04.007
  29. Park HS, Betzenhauser MJ, Zhang Y, Yule DI. Regulation of $Ca^{2+}$ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol. 2012;302:G97-104. https://doi.org/10.1152/ajpgi.00328.2011
  30. Park HS, Betzenhauser MJ, Won JH, Chen J, Yule DI. The type 2 inositol (1,4,5)-trisphosphate ($InsP_3$) receptor determines the sensitivity of InsP3-induced $Ca^{2+}$ release to ATP in pancreatic acinar cells. J Biol Chem. 2008;283:26081-26088. https://doi.org/10.1074/jbc.M804184200
  31. Zaidi A, Barron L, Sharov VS, Schoneich C, Michaelis EK, Michaelis ML. Oxidative inactivation of purified plasma membrane $Ca^{2+}$-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry. 2003;42:12001-12010. https://doi.org/10.1021/bi034565u
  32. Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:1275-1312. https://doi.org/10.1089/ars.2007.1886
  33. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529.
  34. Viola HM, Arthur PG, Hool LC. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type $Ca^{2+}$ channel function in the absence of apoptosis in ventricular myocytes. Circ Res. 2007;100:1036-1044. https://doi.org/10.1161/01.RES.0000263010.19273.48
  35. Redondo PC, Salido GM, Pariente JA, Rosado JA. Dual effect of hydrogen peroxide on store-mediated calcium entry in human platelets. Biochem Pharmacol. 2004;67:1065-1076. https://doi.org/10.1016/j.bcp.2003.10.028
  36. Aarts MM, Tymianski M. TRPMs and neuronal cell death. Pflugers Arch. 2005;451:243-249. https://doi.org/10.1007/s00424-005-1439-x
  37. Vats YA, Fedirko NV, Klevets MY, Voitenko NV. Role of SH groups in the functioning of $Ca^{2+}$-transporting ATPases regulating $Ca^{2+}$ homeostasis and exocytosis. Neurophysiology. 2002;34:5-12. https://doi.org/10.1023/A:1020257722880
  38. Burk SE, Lytton J, MacLennan DH, Shull GE. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar $Ca^{2+}$ pump. J Biol Chem. 1989;264:18561-18568.
  39. Xue P, Deng LH, Zhang ZD, Yang XN, Xia Q, Xiang DK, Huang L, Wan MH. Effect of Chaiqinchengqi decoction on sarco/endoplasmic reticulum $Ca^{2+}$-ATPase mRNA expression of pancreatic tissues in acute pancreatitis rats. World J Gastroenterol. 2008;14:2343-2348. https://doi.org/10.3748/wjg.14.2343
  40. Pariente JA, Camello C, Camello PJ, Salido GM. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol. 2001;179:27-35. https://doi.org/10.1007/s002320010034
  41. Gonzalez A, Granados MP, Salido GM, Pariente JA. $H_2O_2$-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Mol Cell Biochem. 2005;269:165-173. https://doi.org/10.1007/s11010-005-3457-6

Cited by

  1. Reactive Oxygen Species and Endothelial Ca2+ Signaling: Brothers in Arms or Partners in Crime? vol.22, pp.18, 2021, https://doi.org/10.3390/ijms22189821