DOI QR코드

DOI QR Code

Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats

  • Yu, Changchun (Pharmaceutical College, Dalian Medical University) ;
  • Xiong, Yongjian (Pharmaceutical College, Dalian Medical University) ;
  • Chen, Dapeng (Pharmaceutical College, Dalian Medical University) ;
  • Li, Yanli (Pharmaceutical College, Dalian Medical University) ;
  • Xu, Bin (Pharmaceutical College, Dalian Medical University) ;
  • Lin, Yuan (Pharmaceutical College, Dalian Medical University) ;
  • Tang, Zeyao (Pharmaceutical College, Dalian Medical University) ;
  • Jiang, Chunling (Pharmaceutical College, Dalian Medical University) ;
  • Wang, Li (Pharmaceutical College, Dalian Medical University)
  • Received : 2016.03.02
  • Accepted : 2016.07.14
  • Published : 2017.01.01

Abstract

Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.

Keywords

References

  1. Xia YG, Yang BY, Wang QH, Liang J, Wang D, Kuang HX. Species classification and quality assessment of cangzhu (atractylodis rhizoma) by high-performance liquid chromatography and chemometric methods. J Anal Methods Chem. 2013;2013:497532.
  2. Committee SP. Pharmacopoeia of the people's republic of China. 9th ed. Beijing: China Medical Science Press; 2010.
  3. Zhang Y, Wang Z, Zhu J, Chen B, Li Y. Determination of atractylodin in rat plasma by HPLC-UV method and its application to a Pharmacokinetic study. Journal of Liquid Chromatography & Related Technologies. 2012;35:778-787. https://doi.org/10.1080/10826076.2011.608235
  4. Huo Y, Liu YQ, Bai ZX, Cai Q. Determination of (4E, 6E, 12E)-tetradecatriene-8,10-diyne-1,3-diyl diacetate in rat plasma and tissues by HPLC-UV method and their application to a pharmacokinetic and tissue distribution study. J Anal Methods Chem. 2014;2014:249061.
  5. Su TM, Wang MJ, Ruan SB. A research review of chemical constituents and medical function of Rhizoma atractylodis macrocepha1 Lae[J]. Journal of Guiyang University (Natural Sciences). 2008.
  6. Meng H, Li GY, Dai RH, Ma YP, Zhang K, Zhang C, Li X, Wang JH. Two new polyacetylenic compounds from Atractylodes chinensis (DC.) Koidz. J Asian Nat Prod Res. 2011;13:346-349. https://doi.org/10.1080/10286020.2011.557662
  7. Resch M, Heilmann J, Steigel A, Bauer R. Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity. Planta Med. 2001;67:437-442. https://doi.org/10.1055/s-2001-15817
  8. Nakai Y, Kido T, Hashimoto K, Kase Y, Sakakibara I, Higuchi M, Sasaki H. Effect of the rhizomes of atractylodes lancea and its constituents on the delay of gastric emptying. J Ethnopharmacol. 2003;84:51-55. https://doi.org/10.1016/S0378-8741(02)00260-X
  9. Zorniak M, Waluga M, Hartleb M. Motility disorders, functional gastrointestinal disorders, inflammatory bowel disease and cardiac rhythm disturbances - is there a link? Review of literature. Curr Drug Targets. 2015;16:189-193. https://doi.org/10.2174/1389450116666150304104453
  10. Kuo B, Bhasin M, Jacquart J, Scult MA, Slipp L, Riklin EI, Lepoutre V, Comosa N, Norton BA, Dassatti A, Rosenblum J, Thurler AH, Surjanhata BC, Hasheminejad NN, Kagan L, Slawsby E, Rao SR, Macklin EA, Fricchione GL, Benson H, Libermann TA, Korzenik J, Denninger JW. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PLoS One. 2015;10:e0123861. https://doi.org/10.1371/journal.pone.0123861
  11. Andresen V, Whorwell P, Fortea J, Auziere S. An exploration of the barriers to the confident diagnosis of irritable bowel syndrome: a survey among general practitioners, gastroenterologists and experts in five european countries. United European Gastroenterol J. 2015;3:39-52. https://doi.org/10.1177/2050640614558344
  12. Guandalini S, Cernat E, Moscoso D. Prebiotics and probiotics in irritable bowel syndrome and inflammatory bowel disease in children. Benef Microbes. 2015;6:209-217. https://doi.org/10.3920/BM2014.0067
  13. Vicario M, Alonso C, Santos J. Impaired intestinal molecular tightness in the mucosa of irritable bowel syndrome: what are the mediators? Gut. 2009;58:161-162. https://doi.org/10.1136/gut.2008.165670
  14. Mearin F, Perello A, Balboa A. [Irritable bowel syndrome and inflammatory bowel disease: Is there a connection?]. Gastroenterol Hepatol. 2009;32:364-372. https://doi.org/10.1016/j.gastrohep.2008.12.007
  15. Narin B, Ajaj W, Gohde S, Langhorst J, Akgoz H, Gerken G, Ruhm SG, Lauenstein TC. Combined small and large bowel MR imaging in patients with Crohn's disease: a feasibility study. Eur Radiol. 2004;14:1535-1542.
  16. Singh P, Staller K, Barshop K, Dai E, Newman J, Yoon S, Castel S, Kuo B. Patients with irritable bowel syndrome-diarrhea have lower disease-specific quality of life than irritable bowel syndromeconstipation. World J Gastroenterol. 2015;21:8103-8109. https://doi.org/10.3748/wjg.v21.i26.8103
  17. Dlugosz A, Nowak P, D'Amato M, Mohammadian Kermani G, Nystrom J, Abdurahman S, Lindberg G. Increased serum levels of lipopolysaccharide and antiflagellin antibodies in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil . 2015;(12):1747-1754.
  18. Yoon SR, Lee JH, Lee JH, Na GY, Lee KH, Lee YB, Jung GH, Kim OY. Low-FODMAP formula improves diarrhea and nutritional status in hospitalized patients receiving enteral nutrition: a randomized, multicenter, double-blind clinical trial. Nutr J. 2015; 14:116-128. https://doi.org/10.1186/s12937-015-0106-0
  19. Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, Wu GD. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology. 2015;148:1087-1106. https://doi.org/10.1053/j.gastro.2015.01.007
  20. Lin S, Mooney PD, Kurien M, Aziz I, Leeds JS, Sanders DS. Prevalence, investigational pathways and diagnostic outcomes in differing irritable bowel syndrome subtypes. Eur J Gastroenterol Hepatol. 2014;26:1176-1180. https://doi.org/10.1097/MEG.0000000000000171
  21. Marsh A, Eslick EM, Eslick GD. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr 2016;55:897-906. https://doi.org/10.1007/s00394-015-0922-1
  22. Shanahan F, Quigley EM. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology. 2014;146:1554-1563. https://doi.org/10.1053/j.gastro.2014.01.050
  23. Waugh N, Cummins E, Royle P, Kandala NB, Shyangdan D, Arasaradnam R, Clar C, Johnston R. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: systematic review and economic evaluation. Health Technol Assess. 2013;17: xv-xix, 1-211.
  24. La JH, Kim TW, Sung TS, Kang JW, Kim HJ, Yang IS. Visceral hypersensitivity and altered colonic motility after subsidence of inflammation in a rat model of colitis. World J Gastroenterol. 2003;9:2791-2795. https://doi.org/10.3748/wjg.v9.i12.2791
  25. Mozaffari S, Esmaily H, Rahimi R, Baeeri M, Sanei Y, Asadi-Shahmirzadi A, Salehi-Surmaghi MH, Abdollahi M. Effects of hypericum perforatum extract on rat irritable bowel syndrome. Pharmacogn Mag. 2011;7:213-223. https://doi.org/10.4103/0973-1296.84235
  26. La JH, Kim TW, Sung TS, Kim HJ, Kim JY, Yang IS. Increase in neurokinin-1 receptor-mediated colonic motor response in a rat model of irritable bowel syndrome. World J Gastroenterol. 2005;11:237-241. https://doi.org/10.3748/wjg.v11.i2.237
  27. Zou BC, Dong L, Wang Y, Wang SH, Cao MB. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J(Engl). 2007;120:2069-2074.
  28. Peng LH, Yang YS, Gang S, Wang WF. A new model of constipationpredominant irritable bowel syndrome in rats. World Chinese Journal of Digestology. 2004;12:112-116.
  29. von Stein P, Lofberg R, Kuznetsov NV, Gielen AW, Persson JO, Sundberg R, Hellstrom K, Eriksson A, Befrits R, Ost A, von Stein OD. Multigene analysis can discriminate between ulcerative colitis, Crohn's disease, and irritable bowel syndrome. Gastroenterology. 2008;134: 1869-1881; quiz 2153-2154. https://doi.org/10.1053/j.gastro.2008.02.083
  30. Zhu J, Chen L, Xia H, Luo HS. Mechanisms mediating CCK-8Sinduced contraction of proximal colon in guinea pigs. World J Gastroenterol. 2010;16:1076-1085. https://doi.org/10.3748/wjg.v16.i9.1076
  31. Zhao J, Liao D, Gregersen H. Phasic and tonic stress-strain data obtained in intact intestinal segment in vitro. Dig Dis Sci. 2008; 53:3145-3151. https://doi.org/10.1007/s10620-008-0277-z
  32. Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Nat Acad Sci U S A . 2005;102:17519-17524. https://doi.org/10.1073/pnas.0506846102
  33. Srinivas SP, Satpathy M, Guo Y, Anandan V. Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthalmol Visual Sci. 2006;47:4011-4018. https://doi.org/10.1167/iovs.05-1127
  34. Chitano P, Voynow JA, Pozzato V, Cantillana V, Burch LH, Wang L, Murphy TM. Ontogenesis of myosin light chain kinase mRNA and protein content in guinea pig tracheal smooth muscle. Pediatr Pulmonol. 2004;38:456-464. https://doi.org/10.1002/ppul.20118
  35. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004; 64:5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  36. Gong Z, Chen Y, Zhang R, Wang Y, Yang Q, Guo Y, Weng X, Gao S, Wang H, Zhu X, Dong Y, Li Y, Wang Y. Pharmacokinetics of two alkaloids after oral administration of rhizoma coptidis extract in normal rats and irritable bowel syndrome rats. Evid Based Complement Alternat Med. 2014;2014:845048.
  37. Zhu X, Liu Z, Qu H, Niu W, Gao L, Wang Y, Zhang A, Bai L. The effect and mechanism of electroacupuncture at LI11 and ST37 on constipation in a rat model. Acupunct Med. 2016;34:194-200. https://doi.org/10.1136/acupmed-2015-010897
  38. Sung B, Park S, Ha YM, Kim DH, Park CH, Jung KJ, Kim MS, Kim YJ, Kim MK, Moon JO, Yokozawa T, Kim ND, Yu BP, Chung HY. Salicylideneamino-2-thiophenol modulates nuclear factor-${\kappa}B$ through redox regulation during the aging process. Geriatr Gerontol Int. 2015;15:211-219. https://doi.org/10.1111/ggi.12255
  39. Suschek CV, Schnorr O, Kolb-Bachofen V. The role of iNOS in chronic inflammatory processes in vivo: is it damage-promoting, protective, or active at all? Curr Mol Med. 2004;4:763-775. https://doi.org/10.2174/1566524043359908
  40. Pedersen N. EHealth: self-management in inflammatory bowel disease and in irritable bowel syndrome using novel constant-care web applications. EHealth by constant-care in IBD and IBS. Dan Med J. 2015;62:B5168.
  41. Gareau MG, Silva MA, Perdue MH. Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med. 2008;8:274-281. https://doi.org/10.2174/156652408784533760
  42. Naito Y, Takagi T, Uchiyama K, Katada K, Yoshikawa T. Multiple targets of carbon monoxide gas in the intestinal inflammation. Arch Biochem Biophys. 2016;595:147-152. https://doi.org/10.1016/j.abb.2015.06.020
  43. Sanchez de Medina F, Romero-Calvo I, Mascaraque C, Martinez-Augustin O. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis. 2014;20:2394-2404. https://doi.org/10.1097/MIB.0000000000000204
  44. Ozaki H, Hori M, Kinoshita K, Ohama T. Intestinal dysmotility in inflammatory bowel disease: mechanisms of the reduced activity of smooth muscle contraction. Inflammopharmacology. 2005;13:103-111. https://doi.org/10.1163/156856005774423773
  45. Gasparini C, Feldmann M. NF-${\kappa}B$ as a target for modulating inflammatory responses. Curr Pharm Des. 2012;18:5735-5745. https://doi.org/10.2174/138161212803530763
  46. Debnath T, Kim da H, Lim BO. Natural products as a source of antiinflammatory agents associated with inflammatory bowel disease. Molecules . 2013;18:7253-7270. https://doi.org/10.3390/molecules18067253
  47. Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, Lee JD. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res. 2012;32:801-816. https://doi.org/10.1016/j.nutres.2012.09.013
  48. Chiu WC, Huang YL, Chen YL, Peng HC, Liao WH, Chuang HL, Chen JR, Yang SC. Synbiotics reduce ethanol-induced hepatic steatosis and inflammation by improving intestinal permeability and microbiota in rats. Food Funct. 2015;6:1692-1700. https://doi.org/10.1039/C5FO00104H
  49. Xiong Y, Chen D, Lv B, Liu F, Yao Q, Tang Z, Lin Y. Effects of ginsenoside Re on rat jejunal contractility. J Nat Med. 2014;68:530-538. https://doi.org/10.1007/s11418-014-0831-2
  50. Liu FF, Chen DP, Xiong YJ, Lv BC, Lin Y. Characteristics of diprophylline-induced bidirectional modulation on rat jejunal contractility. Korean J Physiol Pharmacol. 2014;18:47-53. https://doi.org/10.4196/kjpp.2014.18.1.47
  51. Chen D, Xiong Y, Wang L, Lv B, Lin Y. Characteristics of emodin on modulating the contractility of jejunal smooth muscle. Can J Physiol Pharmacol. 2012;90:455-462. https://doi.org/10.1139/y2012-004
  52. Sun B, Hu C, Fang H, Zhu L, Gao N, Zhu J. The effects of lactobacillus acidophilus on the intestinal smooth muscle contraction through PKC/MLCK/MLC signaling pathway in TBI mouse model. PLoS One. 2015;10:e0128214. https://doi.org/10.1371/journal.pone.0128214
  53. Zhang J, Qiao Y, Le J, Sun D, Guan Y, Li Z. Olanzapine may inhibit colonic motility associated with the 5-HT receptor and myosin light chain kinase. Psychiatry Investig. 2016;13:232-238. https://doi.org/10.4306/pi.2016.13.2.232

Cited by

  1. Atractylodin Induces Myosin Light Chain Phosphorylation and Promotes Gastric Emptying through Ghrelin Receptor vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/2186798
  2. Comprehensive characterization of neurochemicals in three zebrafish chemical models of human acute organophosphorus poisoning using liquid chromatography-tandem mass spectrometry vol.410, pp.6, 2018, https://doi.org/10.1007/s00216-017-0827-3
  3. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. vol.13, pp.None, 2017, https://doi.org/10.1186/s13020-018-0216-7
  4. Effects of Deoxyschisandrin on Visceral Sensitivity of Mice with Inflammatory Bowel Disease vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/2986097
  5. Anti-Inflammatory Response and Muscarinic Cholinergic Regulation during the Laxative Effect of Asparagus cochinchinensis in Loperamide-Induced Constipation of SD Rats vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040946
  6. Atractylodin Suppresses Dendritic Cell Maturation and Ameliorates Collagen-Induced Arthritis in a Mouse Model vol.67, pp.24, 2017, https://doi.org/10.1021/acs.jafc.9b01163
  7. The anti–heat stress effects of Chinese herbal medicine prescriptions and rumen‐protected γ‐aminobutyric acid on growth performance, apparent nutrient digestibility, and health vol.91, pp.1, 2017, https://doi.org/10.1111/asj.13361
  8. Natural Potent NAAA Inhibitor Atractylodin Counteracts LPS-Induced Microglial Activation vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.577319
  9. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼ vol.14, pp.None, 2017, https://doi.org/10.3389/fnmol.2021.705023
  10. Posttranslational modifications as therapeutic targets for intestinal disorders vol.165, pp.None, 2017, https://doi.org/10.1016/j.phrs.2020.105412
  11. Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation vol.22, pp.7, 2017, https://doi.org/10.3390/ijms22073614
  12. Novel in vivo and in vitro mechanisms of positive inotropic effect of atractylodin vol.48, pp.5, 2017, https://doi.org/10.1111/1440-1681.13406
  13. Atractylodin Suppresses TGF-β-Mediated Epithelial-Mesenchymal Transition in Alveolar Epithelial Cells and Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice vol.22, pp.20, 2017, https://doi.org/10.3390/ijms222011152
  14. A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb) DC. in healthy Thai subjects vol.21, pp.1, 2021, https://doi.org/10.1186/s12906-020-03199-6