
www.kjpp.net Korean J Physiol Pharmacol 2017;21(1):107-115107

Korean J Physiol Pharmacol 2017;21(1):107-115
https://doi.org/10.4196/kjpp.2017.21.1.107

Author contributions: M.H.P., S.H.S. and J.J.B. performed the modeling 
and simulation. G.H.L., B.Y.Y. and Y.G.S. supervised and coordinated the 
study. M.H.P. wrote the manuscript.

This is an Open Access article distributed under the terms 
of the Creative Commons Attribution Non-Commercial 

License, which permits unrestricted non-commercial use, distribution, and 
reproduction in any medium, provided the original work is properly cited.
Copyright © Korean J Physiol Pharmacol, pISSN 1226-4512, eISSN 2093-3827

Introduction
Understanding absorption, distribution, metabolism, excretion 

(ADME) as well as pharmacokinetics (PK) is critical in drug 
discovery and development. This approach typically begins early 
in the drug discovery phase, when hit compounds are available. 
As the project moves forward to the lead optimization phase, 
ADME/PK contributes significantly in rank-ordering compounds 
for further testing, aids in the dose selection in nonclinical 
in vivo pharmacology studies, establishes structure-activity 
relationships (SAR) for structural modifications to improve the 

physicochemical and ADME properties and eventually supports 
candidate selection [1]. Once a candidate is selected, human PK 
prediction can also be conducted to estimate the dose-dependent 
drug exposure and its anticipated pharmacological response as 
well as the potential toxicological effects or even the potential 
drug-drug interactions.

Drug-drug interactions (DDIs) have led to contraindications, 
withdrawal from the market and non-approval of drugs by 
regulatory agencies [2]. Therefore, prediction for a potential risk 
of DDIs between the candidate drug and the co-administered 
drugs would be very important within the pharmaceutical 
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ABSTRACT Over the last decade, physiologically based pharmacokinetics (PBPK) 
application has been extended significantly not only to predicting preclinical/
human PK but also to evaluating the drug-drug interaction (DDI) liability at the 
drug discovery or development stage. Herein, we describe a case study to illustrate 
the use of PBPK approach in predicting human PK as well as DDI using in silico, in 
vivo and in vitro derived parameters. This case was composed of five steps such 
as: simulation, verification, understanding of parameter sensitivity, optimization 
of the parameter and final evaluation. Caffeine and ciprofloxacin were used as tool 
compounds to demonstrate the “fit for purpose” application of PBPK modeling and 
simulation for this study. Compared to caffeine, the PBPK modeling for ciprofloxacin 
was challenging due to several factors including solubility, permeability, clearance 
and tissue distribution etc. Therefore, intensive parameter sensitivity analysis (PSA) 
was conducted to optimize the PBPK model for ciprofloxacin. Overall, the increase 
in Cmax of caffeine by ciprofloxacin was not significant. However, the increase in AUC 
was observed and was proportional to the administered dose of ciprofloxacin. The 
predicted DDI and PK results were comparable to observed clinical data published 
in the literatures. This approach would be helpful in identifying potential key 
factors that could lead to significant impact on PBPK modeling and simulation for 
challenging compounds.
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industry in order to improve the safety and success rate of new 
drugs. Early prediction of DDIs has also become useful to support 
clinical candidate selection. DDI studies and their interpretation 
have been described in a white paper from the Pharmaceutical 
Research and Manufacturers of America (PhRMA) [3] and in a 
guidance document from the US FDA. 

Over the last decade, model-based PK/DDI prediction using in-
vitro data has been increased significantly [4,5]. Initially, simple 
empirical static models were applied to evaluate the DDI risk to 
predict steady state DDI [6-9]. However, these static models are 
often restricted when predicting the ratio of substrate exposures 
before and after perpetrator treatment and are unable to simulate 
dynamic state DDI. Therefore, a dynamic DDI modeling and 
simulation has been proposed to predict DDI which can represent 
in vivo DDI more realistically [10]. Recently, the development 
of physiologically-based pharmacokinetic (PBPK) models has 
extended to the DDI evaluation of dynamic approaches with the 
ability to simulate time-varying substrate and perpetrator kinetics 
at interaction sites [11-13]. In addition, commercial programs 
(e.g. GastroPlusⓇ, SimcypⓇ) dedicated to DDI predictions are 
also introduced which could combine both in vitro/in vivo data 
and clinical study results to help the evaluation of dynamic 
DDIs more efficiently. The PBPK model is typically composed of 
specific compartments corresponding to different body tissues 
and these tissues were also connected by the circulating blood 
system. Each compartment is defined by a tissue-specific volume, 
blood perfusion rate, enzyme/transporter expression levels and 
tissue-plasma partition coefficient (Kp) etc [13].

Herein, we describe a case study using caffeine and cipro
floxacin to illustrate the use of GastroPlus in predicting PK 
and DDI liability using in silico, in vivo and in vitro derived 
parameters. This case is composed of five processes such as (1) 
simulation, (2) verification, (3) understanding of parameter sen
sitivity, (4) optimization of the parameter and (5) final evaluation. 
The objective of this study is to demonstrate the application of 
in silico tools for simulation, process for understanding of drug 
parameter sensitivity, optimization of drug parameter, evaluation 
of PBPK model to provide a satisfactory prediction of PK profile 
and DDI result. However, it should be emphasized that these 
simulations are quite dependent on the quality of the input 
parameters and mechanistic understanding of the processes 
driving PK. A number of more detailed case studies using in 
silico program are also available in the literature illustrating the 
value of such modeling and simulation techniques [14-18]. 

Methods

PBPK modeling program

All modelings were performed using GastroPlus (Version 9.0). 
The physicochemical and ADME properties of compounds were 

estimated and optimized by the ADMET predictor module in 
GastroPlus.

The Advanced Compartmental Absorption Transit (ACAT) 
model was used to predict the rate and extent of oral absorption 
in human. The ACAT model is based on the Compartmental 
Absorption Transit (CAT) model described by Yu and Amidon 
[19]. In short, this model is a physiologically based transit 
model which describes the dissolution, uptake and absorption 
of a compound as it transits through the different segments of 
the digestive tract. Several in vitro and in silico input data, e.g. 
solubility, permeability, logP, particle size, acid dissociation 
constant (pKa) etc with a series of differential equations were also 
used to model the kinetics associated with each of these processes. 
Each organ was also assumed to be perfusion rate limited, and 
the liver and kidney were considered to be the only organs to 
eliminate the compounds in this study. 

Volume of distribution at steady-state (Vss) was estimated 
using the predicted tissue-to-plasma partition coefficient (Ptp) 
[20]. The predicted Ptp values for each tissue were obtained 
from drug-specific physicochemical parameters using the tissue 
composition-based equation derived from Poulin and Theil 
[21]. These equations assume that the compound distributes 
homogenously into the tissue and plasma by passive diffusion 
and accounts for both nonspecific binding to lipids and plasma 
proteins estimated by lipophilicity and plasma protein binding 
(PPB), respectively.

Compounds and PBPK modeling

The physicochemical properties of caffeine and ciprofloxacin 
are summarized in Table 1. The workflow for PBPK modeling is 
also presented in Fig. 1. Firstly, a PBPK model for each compound 
was built in human. And then, the model was compared with the 
observed PK data published in the literature. If the PBPK model 
data were not close enough to the observed data, the parameter 
sensitivity analysis (PSA) was performed to understand the 
root cause of discrepancy between the observed PK data and 
the simulated PBPK data until the root cause of discrepancy is 
discovered. Once the simulated PBPK model was verified, it was 
re-evaluated by other new PK data to confirm its predictability. 
Finally the DDI prediction was performed and evaluated using 
the confirmed PBPK models. References for verification and 
evaluation of PBPK model were summarized in Table 2.

The physicochemical and ADME properties of caffeine such as 
pKa, logP, unbound fraction, permeability, solubility, clearance 
(CL) by liver (or kidney), and blood/plasma ratio etc were 
estimated by the ADMET predictor module in GastroPlus. The 
PBPK modeling of caffeine was performed as mentioned above. 
The physicochemical and ADME properties of ciprofloxacin were 
also estimated by ADMET predictor module in GastroPlus and 
PBPK modeling was conducted as mentioned above.

The PBPK model was assessed in terms of the fold error 
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between the observed values and the predicted values. The 
following statistics were used to assess the prediction accuracy.

The fold-error= Predicted value
Observed value

The R2 statistic (square of the Pearson product moment 
correlation coefficient) was used to quantify the extent of linear 
relationship between predicted and observed parameters. In this 
study, two-fold error would be an acceptable prediction which is 
also widely applied within pharmaceutical industries [15,22-24].

DDI modeling and simulation

DDI modeling for caffeine and ciprofloxacin was conducted 
using the dynamic simulation in DDI module of GastroPlus. 
The verified PBPK models were used for DDI prediction by 
considering the inhibitory effect of ciprofloxacin as a perpetrator 
on caffeine. Caffeine was assumed to be exclusively metabolized 
by the metabolic enzyme CYP1A2 without significant invol
vement of any other drug transporters or metabolic enzymes 
in this DDI simulation. Although several clinical PK studies for 
caffeine or ciprofloxacin had been previously reported, the full 
concentration-time profile data by DDI between caffeine and 
ciprofloxacin were quite limited. In this study, PK results from 

Table 1. Summary of caffeine and ciprofloxacin input parameters in GastroPlus

Parameter
Caffeine Ciprofloxacin

Predicted value* Predicted value Optimized value

Molecular weight (g/mol) 194.19 331.35 331.35
LogP(neutral) –0.15 –0.81 –0.81
Ionization constant (pKa) 2.24 (base) 8.9 (Base)

5.78 (Acid)
0.98 (Base)

8.9 (Base)
5.78 (Acid)
0.98 (Base)

Unbound fraction (fu) (%) 71.54 67.05 67.05
Blood/plasma ratio 1.03 0.96 0.96
Clearance (CL) (L/h) 5.249 131.6 34
Permeability measure (cm/s*10–4) 4.01 0.56 2.23
Solubility (mg/mL) 13.92 0.0266 30
IC50 value (mM) 5.1**

*All of caffeine input parameters were the predicted values and weren't optimized.
**In vitro IC50 value on the CYP1A2 measured by Zhang et al was used [29].

Workflow for PBPK modeling 

PBPK model building 

PBPK model verification 

PBPK model evaluation 

PBPK model optimization 

DDI model building 

DDI model prediction and evaluation 

PBPK model scaling 

PBPK model scaling 

Physicochemical parameters 
for compound 

PBPK modeling software with 
incorporated anatomical and 

physiological parameters 

Body weight, tissue size, tissue 
blood flow, transit time, drug 
binding, haematocrit, etc. – 
simulation program data 

Molecular weight, pKa, 
solubility, permeability, 

formulation, etc – paper, 
website or simulation 

program data 

ADME data 

Fa, Ka, Vd, Kp, CL, etc 
- In silico program, paper, website 

Fig. 1. Proposed workflow for PBPK 
modeling.
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various clinical studies were used in the DDI modeling and 
simulation for caffeine and ciprofloxacin [25-27]. The detailed 
model input parameters were also listed in Table 1. The in vitro 
IC50 value on the CYP1A2 measured by Zhang et al was also 
used for this DDI simulation [28]. Population mean age, dose, 
dose interval and the duration of administration of ciprofloxacin 
and caffeine were determined according to the regimen of the 
clinical DDI studies. The detail values are listed in Table 3.

Results

PBPK model for caffeine

The workflow for building, verifying and evaluating PBPK 
model for caffeine and ciprof loxacin is described in Fig. 1. 
The physicochemical and ADME properties of caffeine and 
ciprofloxacin were predicted using ADMET predictor module 
in GastroPlus and are summarized in Table 1. The PBPK model 
in human was built for oral administration (PO) dosing using 
human physiological PBPK model in GastroPlus. The comparison 
between the predicted value and the observed value was presented 
in Fig. 2. The simulated PK parameters and concentrations were 
within 2-fold error of the observed PK parameters (Cmax, Tmax, 
AUClast) when the predicted ADME parameters by ADMET 
predictor were used. The predicted results were comparable to 
those from observed results.

PBPK model for ciprofloxacin

PBPK model for ciprofloxacin was also built using the method 
described in the experimental section. The physicochemical 
properties and ADME properties of ciprofloxacin were also 
predicted by the ADMET predictor module in GastroPlus and 
are summarized in Table 1. The PBPK model for ciprofloxacin in 
human was built for PO dosing using human physiological PBPK 
model in GastroPlus. The verification and optimization results 
of PBPK modeling are presented in Fig. 3. When verification 

Table 2. Population characteristics and dosing information of the 
pharmacokinetic studies used in the verification and evaluation of 
caffeine and ciprofloxacin PBPK model

Drug Mean age 
(years)

First dose 
(mg) Reference

Caffeine 28 225 [26]
30 230 [27]
27 100 [28]
24 100 [33]
21 96.34 [34]

Ciprofloxacin 29 250 [35]
28 750 [36]
28 250 [37]
23 500 [38]
22 500 [39]
23 500 [29]

Table 3. Population characteristics and dosing information of the pharmacokinetic studies used in the verification and evaluation of DDI 
model

Mean age (years) Caffeine dose (mg) Ciprofloxacin dose (mg) Dosing interval (h) Dosing number Reference

27 100 750 12 3 [40]
30 230 250 12 7 [41]
30 230 500 12 7 [41]
28 225 250 12 7 [26]

Fig. 2. Comparison of observed values and predicted values for caffeine. (A) Predicted and observed concentration-time profile of caffeine in 
Daniel et al.'s paper, (B) Comparison of observed PK values and predicted PK values*. *The PK values of comparison are Cmax, Tmax and AUClast.
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was conducted using the predicted input value only based on 
the structure of ciprofloxacin, the PK parameters such as Cmax, 
Tmax and AUClast values were much lower than the observed value 
(Fig. 3A). Several factors were considered as a root cause of the 
discrepancy and the first one to be investigated was solubility. 
The ciprofloxacin used in clinical PK studies was a salt form, 
ciprof loxacin HCl. Salt formation offers many advantages 
to pharmaceutical products as it can improve the solubility, 
dissolution rate, permeability and efficacy of the drug. However, 
the ciprofloxacin used for PBPK simulation was a free-base 
form. This difference could contribute big difference in terms 
of absorption rate. In addition, the predicted and measured 
value of solubility were quite different. Therefore, the solubility 
input parameter was modified from 0.0266 mg/mL(predicted 
value by GastroPlus) to 30 mg/mL(value from the Drug Bank). 
After changing the solubility, the Cmax, Tmax and AUClast values 
were much more improved than the previous values, however, 
still lower than the observed values (Fig. 3B). To optimize other 
properties for PBPK modeling, the parameter sensitivity analysis 
(PSA) was conducted to predict the impact of the permeability, 
first pass effect of gut (or oral), fraction unbound in enterocytes, 
logD, Kp of kidney (and/or liver), and CL of ciprofloxacin on 
oral exposure. The results of PSA is presented in Fig. 4. The 
presented results show parameters with significant effects on 
the oral exposure of ciprofloxacin. The results for parameters 
having no significant effect on the oral exposure of ciprofloxacin 
are not shown. Based on the PSA results, little impact on the 

ciprofloxacin oral exposure was observed by first pass effect of gut 
or oral, fraction unbound in enterocytes, logD and Kp of kidney 
(data not shown). However, dramatic changes was observed by 
permeability, Kp of liver and the CL of ciprofloxacin (Fig. 4). After 
the parameter optimization for permeability, Kp of liver and CL 
of ciprofloxacin, the simulated PK values and concentrations were 
within 2-fold error of the observed PK values (Cmax, Tmax, AUClast) 
and the concentrations were also well fit for ciprofloxacin (Fig. 
3C). In addition, the simulated PK values were also within 2-fold 
error of the observed PK values from other five different clinical 
PK studies (Fig. 5). Only one study by Valizadeh et al. [29] showed 
that the predicted results (Cmax and Tmax) were out of 2-fold error 
of the observed PK parameters. However, the study by Valizadeh 
et al. [29] also showed much larger deviation possibly due to 
significant inter-individual variability in its clinical study and 
therefore, this paper was excluded from the PBPK modeling. 

DDI modeling and simulation for caffeine and 
ciprofloxacin 

The effect of ciprofloxacin after multiple dose on the PK of 
caffeine was simulated. The DDI simulations in the presence 
of CYP1A2 inhibitor ciprofloxacin resulted in various results 
for Cmax, Tmax, AUClast and the ratio between the observed and 
predicted PK value (Table 4). As expected, ciprofloxacin was 
predicted to have an effect on caffeine PK due to CYP1A2 
inhibition of ciprofloxacin. With Daniel’ paper (ciprofloxacin, 

Observed concentration 

Predicted concentration 

90% CI mean concentration 

(A) 

(C) 
Observed concentration 

Predicted concentration 

90% CI mean concentration 

Fig. 3. PK profile of ciprofloxacin after 500 mg PO dose in human. 
(A) PK profile predicted by only predicted input value, (B) PK profile 
predicted after changing the solubility of ciprofloxacin, (C) PK profile 
predicted after optimizing the permeability, Kp of liver and CL of 
ciprofloxacin.

(B) 
Observed concentration 

Predicted concentration 

90% CI mean concentration 
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750 mg), the DDI model predicted a mean value of 10% and 
50% increase in terms of Cmax and AUC of caffeine compared 
to the PK result of caffeine alone. Regarding Harder’s paper 
(ciprof loxacin, 250 mg), the DDI model predicted a mean 
value of 10% and 20% increase in the Cmax and AUC of caffeine 
compared to the PK result of caffeine before DDI. However, the 
DDI model predicted a mean value of 10% and 40% increase in 
the Cmax and AUC of caffeine compared to PK result of caffeine 
before DDI when the higher dose (500 mg) of ciprofloxacin was 
co-administered. Staib’s paper (ciprofloxacin, QD, 250 mg) also 
suggested that the DDI model predicted a mean value of 10% and 
20% increase in the Cmax and AUC of caffeine compared to the PK 
result of caffeine before DDI. All of the simulated PK parameters 
and the rate of change after multiple dosing ciprofloxacin were 
within 2-fold error of the observed PK parameters and the rate 

of change after multiple dosing ciprofloxacin. Based on DDI 
results, the increase of Cmax was insignificant and similar in 
all of cases. However, the increase of AUC was proportional to 
the administered dose. In cases of DDI between caffeine and 
ciprofloxacin, the administered dose was the important factor 
that could significantly influence the AUC. Also, inter-individual 
variability on PK parameters was not likely significant in this 
study. Overall, the predicted results were comparable to those 
from observed results. The verified PBPK model using in vivo PK 
data could be used to predict in vivo DDI result. 

Discussion
The prediction of PK profile using compartmental PK models, 

(A) 

(B) 

(C) 

Fig. 4. Parameter sensitivity analysis of permeability, CL and Kp of 
liver on (A) Cmax (B) Tmax and (C) AUClast for Ciprofloxacin.
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as traditional PK model, is convenient; however, extrapolation 
and assumptions about distributional kinetics are essential [30]. 
On the contrary, the PBPK models have been demonstrated to 
facilitate cross species extrapolation and more accurately predict 
the PK profiles [31]. This PBPK approach is particularly useful 
when the DMPK resource is limited and unable to conduct 
many in vivo PK studies on a regular basis at the discovery stage. 
Once PBPK model building and verification in one preclinical 
species are performed, the PBPK model can be scaled or applied 
to other species or even to human. Regardless of a type of the PK 
model used, this approach for predicting PK profile has a broad 
application; such as (1) determining in vitro properties required 
to obtain the target PK profile, (2) rank-ordering compounds in 
discovery most likely for the desired exposure profile in animals 
or human, (3) assessing the effect of food on absorption in 
human, and (4) determine attributes governing bioavailability 
and required to obtain a desired profile [1]. This approach is also 

very helpful even in roughly-predicting DDI-liabilities at the early 
drug discovery. GastroPlus has a quantitative structure-activity 
relationship (QSAR) model function (ADMET predictor) and can 
estimate a number of ADMET properties of new chemical entities 
based on their molecular structures. 

This study described herein is an example of where in silico 
programs such as PBPK and ADMET predictor have been 
able to utilize the parameter estimates to adequately predict 
the observed clinical PK profile and DDI result or optimize 
the PK model parameters with comparison and interpretation 
between predicted and observed results, using PSA. Based on the 
simulation, the DDI liability of ciprofloxacin as a perpetrator on 
caffeine appears to be minimal and no significant increase of Cmax 
and AUC in caffeine was predicted. In general, the more in silico 
derived parameters are used as inputs for the model, the more 
assumptions are required. Obviously the most closely arrayed 
parameter set such as in vivo measured values will likely provide 
the best prediction in modeling and simulation. Therefore, when 
the more in silico derived parameters are used in PBPK modeling, 
the more caution should be taken to make sure that the result 
is acceptable and the parameters could suitably influence the 
result. Therefore, a good understanding of the physicochemical 
and ADME properties of the drug and its role in oral exposure 
could be critical in any modeling and simulation exercise. Once 
correlations are established, in silico derived parameters could 
be used as a powerful tool to predict PK profile as well as DDI 
liability for the new chemical entities in the early drug discovery 
and development phase.

Conclusion
Predicting potential drug–drug interactions is one of the main 

areas where PBPK approaches have offered significant advances 
in recent years. As a recommended practice, the verification of an 

Table 4. The observed and predicted pharmacokinetic parameters for caffeine before and after doses of ciprofloxacin

PK parameter

Before ciprofloxacin After ciprofloxacin

Observed Simulated
Ratio 

(simulated/
observed)

Observed Simulated
Ratio 

(simulated/
observed)

Daniel et al. paper 
   Cirpofloxacin 750 mg

Cmax (mg/mL)
Tmax (h)
AUC 0-t (mg-h/mL)

2.1±0.5
1.2±0.4

16.3±6.6

1.8
0.7

15.4

0.9
0.8
0.9

2.3±0.4
1.4±0.6

25.9±7.8

2.0
0.8

22.8

0.9
0.7
0.9

Harder et al. paper 
   Cirpofloxacin 250 mg

Cmax (mg/mL)
Tmax (h)
AUC 0-t (mg-h/mL)

4.5±1.3
0.7±0.3

22.4±7.5

4.6
0.7

39.0

1.0
1.0
1.7

4.9±0.8
1.0±0.8

35.2±18.7

4.9
0.8

47.3

1.0
0.8
1.3

Harder et al. paper 
   Cirpofloxacin 500 mg

Cmax (mg/mL)
Tmax (h)
AUC 0-t (mg-h/mL)

3.9±1.1
0.9±0.4

20.4±6.8

4.6
0.7

39.0

1.2
0.8
1.9

4.6±0.7
0.9±0.4

32.2±13.6

5.0
0.8

53.4

1.1
0.9
1.7

Staib et al. paper
   Cirpofloxacin 250 mg

Cmax (mg/mL)
Tmax (h)
AUC 0-t (mg-h/mL)

4.5±1.3
0.7±0.3

22.4±7.5

4.2
0.7

36.2

0.9
1.0
1.6

4.9±0.8
1.0±0.8

35.2±18.7

4.5
0.8

43.7

0.9
0.8
1.2

0.5

5
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Fig. 5. Comparison of observed and predicted PK values* for 
ciprofloxacin. *The PK values of comparison are Cmax, Tmax and AUClast.
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appropriate PBPK model with the parameter sensitivity analysis 
as well as in vivo data could provide the increased confidence in 
DDI simulation outcome. This approach could be particularly 
useful in identifying potential key factors that could lead to 
significant impact on the extent of human exposure and DDI. 
This case study suggested that in silico derived parameters could 
be useful and acceptable for PK prediction if carefully applied. 
This study also suggested that the optimization module such as 
PSA could be helpful for optimizing important parameters for 
the prediction of human exposure and DDI simulation. 
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