DOI QR코드

DOI QR Code

Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s

  • Ko, Juyeon (Department of Physiology, Seoul National University College of Medicine) ;
  • Myeong, Jongyun (Department of Physiology, Seoul National University College of Medicine) ;
  • Yang, Dongki (Department of Physiology, College of Medicine, Gachon University) ;
  • So, Insuk (Department of Physiology, Seoul National University College of Medicine)
  • Received : 2016.11.01
  • Accepted : 2016.11.24
  • Published : 2017.01.01

Abstract

Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (-)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.

Keywords

References

  1. Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2:1313-1323. https://doi.org/10.1016/0896-6273(89)90069-X
  2. Nilius B, Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch. 2005;451:1-10. https://doi.org/10.1007/s00424-005-1462-y
  3. Putney JW. Physiological mechanisms of TRPC activation. Pflugers Arch. 2005;451:29-34. https://doi.org/10.1007/s00424-005-1416-4
  4. Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T. Contribution of endogenously expressed Trp1 to a $Ca^{2+}$-selective, store-operated $Ca^{2+}$ entry pathway. FASEB J. 2001;15:1727-1738. https://doi.org/10.1096/fj.01-0108com
  5. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store-operated $Ca^{2+}$ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol. 2001;3:121-127. https://doi.org/10.1038/35055019
  6. Jeon JP, Roh SE, Wie J, Kim J, Kim H, Lee KP, Yang D, Jeon JH, Cho NH, Kim IG, Kang DE, Kim HJ, So I. Activation of $TRPC4{\beta}$ by $G{\alpha}i$ subunit increases $Ca^{2+}$ selectivity and controls neurite morphogenesis in cultured hippocampal neuron. Cell Calcium. 2013;54:307-319. https://doi.org/10.1016/j.ceca.2013.07.006
  7. Philipp S, Cavalie A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V. A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J. 1996;15:6166-6171.
  8. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem. 2000;275:17517-17526. https://doi.org/10.1074/jbc.275.23.17517
  9. Kim H, Kim J, Jeon JP, Myeong J, Wie J, Hong C, Kim HJ, Jeon JH, So I. The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels. Channels (Austin). 2012;6:333-343. https://doi.org/10.4161/chan.21198
  10. Kim SJ, Koh EM, Kang TM, Kim YC, So I, Isenberg G, Kim KW. $Ca^{2+}$ influx through carbachol-activated non-selective cation channels in guinea-pig gastric myocytes. J Physiol. 1998;513:749-760. https://doi.org/10.1111/j.1469-7793.1998.749ba.x
  11. Ordaz B, Tang J, Xiao R, Salgado A, Sampieri A, Zhu MX, Vaca L. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. J Biol Chem. 2005; 280:30788-30796. https://doi.org/10.1074/jbc.M504745200
  12. Blair NT, Kaczmarek JS, Clapham DE. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol. 2009;133:525-546. https://doi.org/10.1085/jgp.200810153
  13. Kim MT, Kim BJ, Lee JH, Kwon SC, Yeon DS, Yang DK, So I, Kim KW. Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells. Am J Physiol Cell Physiol. 2006;290:C1031-C1040. https://doi.org/10.1152/ajpcell.00602.2004
  14. Shimizu S, Yoshida T, Wakamori M, Ishii M, Okada T, Takahashi M, Seto M, Sakurada K, Kiuchi Y, Mori Y. $Ca^{2+}$-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J Physiol. 2006;570:219-235. https://doi.org/10.1113/jphysiol.2005.097998
  15. Thakur DP, Tian JB, Jeon J, Xiong J, Huang Y, Flockerzi V, Zhu MX. Critical roles of Gi/o proteins and phospholipase C-${\delta}1$ in the activation of receptor-operated TRPC4 channels. Proc Natl Acad Sci U S A. 2016;113:1092-1097. https://doi.org/10.1073/pnas.1522294113
  16. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong XP, Yu T, Lieberman AP, Showalter HD, Xu H. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun. 2012;3:731. https://doi.org/10.1038/ncomms1735
  17. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT. Preassociation of calmodulin with voltage-gated $Ca^{2+}$ channels revealed by FRET in single living cells. Neuron. 2001;31:973-985. https://doi.org/10.1016/S0896-6273(01)00438-X
  18. Epe B, Steinhauser KG, Woolley P. Theory of measurement of Forster-type energy transfer in macromolecules. Proc Natl Acad Sci U S A. 1983;80:2579-2583. https://doi.org/10.1073/pnas.80.9.2579
  19. Patterson G, Day RN, Piston D. Fluorescent protein spectra. J Cell Sci. 2001;114:837-838.
  20. Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H. (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl . 2015;54:3787-3791. https://doi.org/10.1002/anie.201411511
  21. Carson C, Raman P, Tullai J, Xu L, Henault M, Thomas E, Yeola S, Lao J, McPate M, Verkuyl JM, Marsh G, Sarber J, Amaral A, Bailey S, Lubicka D, Pham H, Miranda N, Ding J, Tang HM, Ju H, Tranter P, Ji N, Krastel P, Jain RK, Schumacher AM, Loureiro JJ, George E, Berellini G, Ross NT, Bushell SM, Erdemli G, Solomon JM. Englerin a agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation. PLoS One. 2015;10:e0127498. https://doi.org/10.1371/journal.pone.0127498
  22. Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC. TRPC4 forms store-operated $Ca^{2+}$ channels in mouse mesangial cells. Am J Physiol Cell Physiol. 2004;287:C357-C364. https://doi.org/10.1152/ajpcell.00068.2004
  23. Hong C, Kwak M, Myeong J, Ha K, Wie J, Jeon JH, So I. Extracellular disulfide bridges stabilize TRPC5 dimerization, trafficking, and activity. Pflugers Arch. 2015;467:703-712. https://doi.org/10.1007/s00424-014-1540-0
  24. Kim J, Kwak M, Jeon JP, Myeong J, Wie J, Hong C, Kim SY, Jeon JH, Kim HJ, So I. Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Arch. 2014;466:491-504. https://doi.org/10.1007/s00424-013-1332-y
  25. Myeong J, Kwak M, Hong C, Jeon JH, So I. Identification of a membrane-targeting domain of the transient receptor potential canonical (TRPC)4 channel unrelated to its formation of a tetrameric structure. J Biol Chem. 2014;289:34990-35002. https://doi.org/10.1074/jbc.M114.584649
  26. Myeong J, Kwak M, Jeon JP, Hong C, Jeon JH, So I. Close spatioassociation of the transient receptor potential canonical 4 (TRPC4) channel with $G{\alpha}i$ in TRPC4 activation process. Am J Physiol Cell Physiol. 2015;308:C879-C889. https://doi.org/10.1152/ajpcell.00374.2014
  27. Myeong J, Ko J, Hong C, Yang D, Lee KP, Jeon JH, So I. The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels. Biochem Biophys Res Commun. 2016;474:476-481. https://doi.org/10.1016/j.bbrc.2016.04.138
  28. Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem. 2012;287:3530-3540. https://doi.org/10.1074/jbc.M111.283218
  29. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295-300. https://doi.org/10.1038/nature12354
  30. Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T. Activation of the endothelial store-operated ISOC $Ca^{2+}$ channel requires interaction of protein 4.1 with TRPC4. Circ Res. 2005; 97:1164-1172. https://doi.org/10.1161/01.RES.0000193597.65217.00
  31. Cioffi DL, Wu S, Chen H, Alexeyev M, St Croix CM, Pitt BR, Uhlig S, Stevens T. Orai1 determines calcium selectivity of an endogenous TRPC heterotetramer channel. Circ Res. 2012;110:1435-1444. https://doi.org/10.1161/CIRCRESAHA.112.269506
  32. Gross SA, Guzman GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalie A. TRPC5 is a $Ca^{2+}$-activated channel functionally coupled to $Ca^{2+}$-selective ion channels. J Biol Chem. 2009;284: 34423-34432. https://doi.org/10.1074/jbc.M109.018192
  33. Lee KP, Jun JY, Chang IY, Suh SH, So I, Kim KW. TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Mol Cells. 2005;20:435-441.
  34. Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology. 2009;137:1415-1424. https://doi.org/10.1053/j.gastro.2009.06.046
  35. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol. 2007;9:636-645. https://doi.org/10.1038/ncb1590
  36. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A. 2008; 105:2895-2900. https://doi.org/10.1073/pnas.0712288105
  37. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr. TRPC channels function independently of STIM1 and Orai1. J Physiol. 2009;587:2275-2298. https://doi.org/10.1113/jphysiol.2009.170431
  38. Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S. An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/ TRPCs. FEBS Lett. 2010;584:2022-2027. https://doi.org/10.1016/j.febslet.2009.11.078

Cited by

  1. Importance of a 4-Alkyl Substituent for Activity in the Englerin Series vol.8, pp.7, 2017, https://doi.org/10.1021/acsmedchemlett.7b00161
  2. Dual action of the Gα q -PLCβ-PI(4,5)P 2 pathway on TRPC1/4 and TRPC1/5 heterotetramers vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-30625-0
  3. Differential PI(4,5)P 2 sensitivities of TRPC4, C5 homomeric and TRPC1/4, C1/5 heteromeric channels vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-018-38443-0
  4. Trpm4 ion channels in pre-Bötzinger complex interneurons are essential for breathing motor pattern but not rhythm vol.17, pp.2, 2017, https://doi.org/10.1371/journal.pbio.2006094
  5. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels vol.471, pp.8, 2017, https://doi.org/10.1007/s00424-019-02289-w
  6. Abscisic Acid Is Required for Root Elongation Associated With Ca 2+ Influx in Response to Water Stress vol.11, pp.None, 2017, https://doi.org/10.3389/fpls.2020.00332
  7. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology vol.7, pp.None, 2020, https://doi.org/10.3389/fcvm.2020.00024
  8. Activation of TRPC (Transient Receptor Potential Canonical) Channel Currents in Iron Overloaded Cardiac Myocytes vol.14, pp.2, 2021, https://doi.org/10.1161/circep.120.009291