DOI QR코드

DOI QR Code

Damping Applications of Ferrofluids: A Review

  • Huang, Chuan (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University) ;
  • Yao, Jie (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University) ;
  • Zhang, Tianqi (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University) ;
  • Chen, Yibiao (School of Mechanical Engineering, University of Science and Technology Beijing) ;
  • Jiang, Huawei (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University) ;
  • Li, Decai (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University)
  • 투고 : 2016.11.08
  • 심사 : 2017.01.11
  • 발행 : 2017.03.31

초록

Ferrofluids are a special category of smart nanomaterials which shows normal liquid behavior coupled with superparamagnetic properties. One of the earliest and most prospective applications of ferrofluids is in damping, which has prominent advantages compared with conventional damping devices: simplicity, flexibility and reliability. This paper presents the basic principles that play a major role in the design of ferrofluid damping devices. The characteristics of typical ferrofluid damping devices including dampers, vibration isolators, and dynamic vibration absorbers are compared and summarized, and then recent progress of vibration energy harvesters based on ferrofluid is briefly described. Additionally, we proposed a novel ferrofluid dynamic vibration absorber in this paper, and its damping efficiency was verified with experiments. In the end, the critical problems and research directions of the ferrofluid damping technology in the future are raised.

키워드

참고문헌

  1. S. Odenbach, Lect. Notes. Phys. 594 (2002).
  2. R. E. Rosensweig, Annu. Rev. Fluid. Mech. 19, 437 (1987). https://doi.org/10.1146/annurev.fl.19.010187.002253
  3. P. Stephen Solomon, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, U.S. Patent (3215572), (1965).
  4. J. Rabinow, Trans. Am. Inst. Electr. Eng. 67, 1308 (1948). https://doi.org/10.1109/T-AIEE.1948.5059821
  5. S. Genc and B. Derin, Curr. Opin. Chem. Eng. 3, 118 (2014). https://doi.org/10.1016/j.coche.2013.12.006
  6. P. P. Phule and J. M. Ginder, MRS Bull. 23, 19 (1998).
  7. F. Imaduddin, S. A. Mazlan, and H. Zamzuri, Mater. Des. 51, 575 (2013). https://doi.org/10.1016/j.matdes.2013.04.042
  8. Z. Wang, G. Bossis, O. Volkova, V. Bashtovoi, and M. Krakov, J. Intell. Mater. Syst. Struct. 14, 93 (2003). https://doi.org/10.1177/1045389X03014002004
  9. Feasibility study and model development for a ferrofluid viscous damper, Goddard Space Flight Center, Maryland (1967).
  10. B. Leo and L. Rudolph, Viscous damper using magnetic ferrofluid, U.S. Patent (3538469), (1970).
  11. R. Moskowitz, IEEE Spectr. 12, 53 (1975).
  12. K. Raj and R. Moskowitz, J. Magn. Magn. Mater. 85, 233 (1990). https://doi.org/10.1016/0304-8853(90)90058-X
  13. K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995). https://doi.org/10.1016/0304-8853(95)00365-7
  14. B. D. Moscowitz and K. Raj, Mach. Des. 67, 57 (1995).
  15. J. Popplewell and S. Charles, IEEE Trans. Magn. 17, 2923 (1981). https://doi.org/10.1109/TMAG.1981.1061670
  16. R. E. Rosensweig, Sci. Am. 247, 136 (1982).
  17. C. Scherer and A. M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005). https://doi.org/10.1590/S0103-97332005000400018
  18. D. Mayer, Adv. Electr. Electron. Eng. 7, 9 (2008).
  19. C. Buzduga, The Third International Symposium on Electrical Engineering and Energy Converters, 24 (2009).
  20. F. Ezekiel, Mechanical Engineering 97, 94 (1975).
  21. K. Raj and R. Moskowitz, IEEE Trans. Magn. 16, 358 (1980). https://doi.org/10.1109/TMAG.1980.1060625
  22. I. Torres-Diaz and C. Rinaldi, Soft Matter 10, 8584 (2014). https://doi.org/10.1039/C4SM01308E
  23. J. Philip and J. M. Laskar, Journal of Nanofluids 1, 3 (2012). https://doi.org/10.1166/jon.2012.1002
  24. H. Shokrollahi, Mater. Sci. Eng. C 33, 2476 (2013). https://doi.org/10.1016/j.msec.2013.03.028
  25. R. J. Yang, H. H. Hou, Y. N. Wang, and L. M. Fu, Sens. Actuators: B 224, 1 (2016). https://doi.org/10.1016/j.snb.2015.10.053
  26. R. E. Rosensweig, Ferrohydrodynamics, Cambrige University Press, Cambridge (1985).
  27. R. E. Rosensweig, AIAA J. 4, 1751 (1966). https://doi.org/10.2514/3.3773
  28. R. E. Rosensweig, Nature 210, 613 (1966). https://doi.org/10.1038/210613a0
  29. D. Calarasu, C. Cotae, and R. Olaru, J. Magn. Magn. Mater. 201, 401 (1999). https://doi.org/10.1016/S0304-8853(99)00111-0
  30. R. Moskowitz, P. Stahl, and W. R. Reed, Inertia damper using ferrofluid, U.S. Patent (4123675), (1978).
  31. D. L. Miller, Magnetic viscous damper, U.S. Patent (4200003), (1980).
  32. T. Kogure, Damper device for a motor, U.S. Patent (5081882), (1992).
  33. G. Zhou and L. Sun, Smart Mater. Struct. 17, 055023 (2008). https://doi.org/10.1088/0964-1726/17/5/055023
  34. S. S. Rao and F. F. Yap, Mechanical vibrations (forth edition), Addison-Wesley, New York (1995).
  35. C. Liu, X. Jing, S. Daley, and F. Li, Mech. Syst. Signal Process. 56, 55 (2015).
  36. K. Nakatsuka, H. Yokoyama, J. Shimoiizaka, and T. Funaki, J. Magn. Magn. Mater. 65, 359 (1987). https://doi.org/10.1016/0304-8853(87)90070-9
  37. H. Fukuda, K. Ueno, S. Kamiyama, and T. Oyama, JSME Int. J. Ser. B 41, 822 (1998).
  38. S. Kamiyama, Int. J. Mod. Phys. B 13, 2213 (1999). https://doi.org/10.1142/S0217979299002332
  39. S. Kamiyama, K. Okamoto, and T. Oyama, Energy Convers. Manage. 43, 281 (2002). https://doi.org/10.1016/S0196-8904(01)00111-X
  40. R. Olaru, A. Salceanu, D. Calarasu, and C. Cotae, Sens. Actuators: A 81, 290 (2000). https://doi.org/10.1016/S0924-4247(99)00177-6
  41. C. Petrescu and R. Olaru, IEEE International Symposium on Advanced Topics in Electrical Engineering, 374 (2015).
  42. J. Liu, J. Tribology 131, 021801 (2009). https://doi.org/10.1115/1.3075870
  43. B. M. Berkovsky and V. Bashtovoy, Magnetic fluids and applications handbook, Begell house, New York (1996).
  44. M. S. Krakov, J. Magn. Magn. Mater. 201, 368 (1999). https://doi.org/10.1016/S0304-8853(99)00100-6
  45. V. Bashtovoi, D. Kabachnikov, A. Reks, L. Suloeva, G. Bossis, and O. Volkova, Magnetohydrodynamics 36, 190 (2000). https://doi.org/10.1023/A:1004853922147
  46. V. G. Bashtovoi, D. N. Kabachnikov, A. Y. Kolobov, V. B. Samoylov, and A. V. Vikoulenkov, J. Magn. Magn. Mater. 252, 312 (2002). https://doi.org/10.1016/S0304-8853(02)00599-1
  47. V. G. Bashtovoi, G. Bossis, D. N. Kabachnikov, M. S. Krakov, and O. Volkova, J. Magn. Magn. Mater. 252, 315 (2002). https://doi.org/10.1016/S0304-8853(02)00597-8
  48. V. Bashtovoi, O. Lavrova, T. Mitkova, V. Polevikov, and L. Tobiska, J. Magn. Magn. Mater. 289, 207 (2005). https://doi.org/10.1016/j.jmmm.2004.11.060
  49. V. Bashtovoi, A. Reks, P. Kuzhir, G. Bossis, A. Vikulenkov, A. Moisheev, and N. Markachev, Inertial damper for E.g. satellite antenna, has case with cavity comprising complex including magnetic field source introduced In magnetic fluid, and elastic unit permitting to stabilize complex in defined position of cavity, F.R. Patent (2894004 A1), (2007).
  50. W. Yang, D. Li, and Z. Feng, J. Vib. Control 19, 183 (2013). https://doi.org/10.1177/1077546311433441
  51. J. Yao, J. Chang, D. Li, and X. Yang, J. Magn. Magn. Mater. 402, 28 (2015).
  52. W. Yang, J. Vib. Control (2015).
  53. M. Abe, Y. Fujino, and S. Kimura, 5th Annual International Symposium on Smart Structures and Materials, 620 (1998).
  54. Y. Ohira, H. Houda, and T. Sawada, Int. J. Appl. Electromagn. Mech. 13, 71 (2001).
  55. S. Horie, M. Shimoda, K. Ohno, J. Nakamura, and T. Sawada, Int. J. Appl. Electromagn. Mech. 25, 139 (2007).
  56. K. Ohno, M. Shimoda, and T. Sawada, J. Phys.: Condens. Matter 20, 204146 (2008). https://doi.org/10.1088/0953-8984/20/20/204146
  57. K. Ohno and T. Sawada, Int. J. Appl. Electromagn. Mech. 33, 1411 (2010).
  58. K. Ohno, H. Suzuki, and T. Sawada, J. Magn. Magn. Mater. 323, 1389 (2011). https://doi.org/10.1016/j.jmmm.2010.11.052
  59. M. Ohaba, Y. Suzuki, T. Sawada, Y. Z. Liu, M. Takeuchi, and T. Tanahashi, J. Magn. Magn. Mater. 252, 306 (2002). https://doi.org/10.1016/S0304-8853(02)00684-4
  60. H. Masuda, T. Oyamada, K. Ikari, and T. Sawada, J. Jpn. Soc. Appl. Electromagn. Mech. 21, 228 (2013). https://doi.org/10.14243/jsaem.21.228
  61. T. Oyamada, H. Masuda, K. Ikari, and T. Sawada, Magnetohydrodynamics 49, 515 (2013).
  62. T. Oyamada, H. Masuda, K. Ikari, and T. Sawada, Int. J. Appl. Electromagn. Mech. 45, 659 (2014).
  63. K. Ikari, H. Masuda, T. Oyamada, and T. Sawada, Materials Science Forum 792, 275 (2014). https://doi.org/10.4028/www.scientific.net/MSF.792.275
  64. S. Kondo, K. Ikari, and T. Sawada, Materials Science Forum 856, 21 (2016). https://doi.org/10.4028/www.scientific.net/MSF.856.21
  65. S. F. Alazemi, M. F. Daqaq, S. F. Alazemi, and M. F. Daqaq, ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, V002T07A029 (2013).
  66. S. F. Alazemi, A. Bibo, and M. F. Daqaq, ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, V002T07A008 (2014).
  67. A. Bibo, R. Masana, A. King, G. Li, and M. F. Daqaq, Phys. Lett. A 376, 2163 (2012). https://doi.org/10.1016/j.physleta.2012.05.033
  68. S. H. Chae, S. Ju, Y. Choi, S. Jun, S. M. Park, S. Lee, H. W. Lee, and C. Ji, Journal of Physics: Conference Series, 914 (2013).
  69. D. W. Oh, D. Y. Sohn, D. G. Byun, and Y. S. Kim, IEEE International Conference on Electrical Machines and Systems, 2033 (2014).
  70. S. Wang and D. Li, J. Korean Phys. Soc. 67, 818 (2015). https://doi.org/10.3938/jkps.67.818
  71. S. Wang and D. Li, Electron. Lett. 51, 1693 (2015). https://doi.org/10.1049/el.2015.2696
  72. Y. Wang, Q. Zhang, L. Zhao, and E. S. Kim, IEEE International Conference on MICRO Electro Mechanical Systems, 122 (2015).
  73. J. G. Monroe and S. M. Thompson, Proc. SPIE 9493, 94930G (2015).
  74. S. F. Alazemi, A. Bibo, and M. F. Daqaq, Eur. Phys. J. Spec. Top. 224, 2993 (2015). https://doi.org/10.1140/epjst/e2015-02602-9
  75. D. Kim and K. Yun, Journal of Physics: Conference Series 660, 012108 (2015). https://doi.org/10.1088/1742-6596/660/1/012108
  76. D. Kim, S. Yu, B. G. Kang, and K. S. Yun, J. Microelectromech. S. 24, 516 (2015). https://doi.org/10.1109/JMEMS.2015.2413811
  77. Y. S. Kim, J. Magn. 20, 252 (2015). https://doi.org/10.4283/JMAG.2015.20.3.252

피인용 문헌

  1. Magnetic levitation force of composite magnets in a ferrofluid damper vol.27, pp.11, 2018, https://doi.org/10.1088/1361-665X/aae2f3