DOI QR코드

DOI QR Code

Chlorodifluoromethane (CHClF2) Thermal Decomposition by DC Nitrogen Plasma

질소 플라즈마 공정을 이용한 염화이불화메탄(CHClF2) 열분해

  • Ko, Eun Ha (Department of Chemical Engineering (BK21 plus program), Inha University) ;
  • Yoo, Hyeonseok (Department of Chemical Engineering (BK21 plus program), Inha University) ;
  • Jung, Yong-An (Chemical Analysis Center, Korea Testing Certification) ;
  • Park, Dong-Wha (Department of Chemical Engineering (BK21 plus program), Inha University) ;
  • Kim, Dong-Wook (Department of Chemical Engineering (BK21 plus program), Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering (BK21 plus program), Inha University)
  • 고은하 (인하대학교 화학공학과(BK21+ 프로그램)) ;
  • 유현석 (인하대학교 화학공학과(BK21+ 프로그램)) ;
  • 정용안 (한국기계전기전자시험연구원 화학분석센터) ;
  • 박동화 (인하대학교 화학공학과(BK21+ 프로그램)) ;
  • 김동욱 (인하대학교 화학공학과(BK21+ 프로그램)) ;
  • 최진섭 (인하대학교 화학공학과(BK21+ 프로그램))
  • Received : 2016.12.13
  • Accepted : 2017.02.24
  • Published : 2017.04.10

Abstract

The nitrogen plasma thermal decomposition and recovery processes for $CHClF_2$ (Chlorodifluoromethane) refringent were investigated. The steam generator was employed to provide superheated steam reactor, supporting the decomposition reaction of refringent. Even though over 94% of R-22 was decomposed on the condition of 60 A and 9.0 kW, a higher power and specific energy density were required to achieve the complete combustion of carbon materials. In the operating condition of 60 A and 12.6 kW, $O_2$/R-22 ratio in reactants gases are a key factor to obtain much higher decomposition ratio during process. It should be noticed that injecting the mixture of $O_2$ and air was much more effective than injecting the air consisting equivalent $O_2$ amount.

염화이불화메탄($CHClF_2$) 냉매를 완전하게 분해하여 회수하기 위한 질소 플라즈마 열분해 공정이 연구되었다. 과열증기를 공급하여 분해가 보다 원활히 이루어질 수 있도록 스팀 발생기가 부착되었다. 60 A, 9.0 kW 이상의 운전 조건에서 94% 이상의 높은 분해율을 보이지만 탄소 성분의 완전 연소를 위해서는 같은 전류 대비 더 높은 power와 specific energy density를 갖춰야 함이 확인되었다. 60 A, 12.6 kW급 이상의 운전 조건에서는 $O_2$/R-22 ratio가 specific energy density에 비례하여 증가하였을 때 더 높은 분해율을 획득할 수 있었다. 반응물인 산소를 주입하는데 있어서 air를 단독으로 과량 주입하는 것보다는 산소를 air와 혼합하여 주입하는 것이 더 유용함이 밝혀졌다.

Keywords

References

  1. A. Steiner, A. R. Ravishankara, and M. Molina, HFCs: A Critical Link in Protecting Climate and the Ozone Layer, pp. 13-26, United Nations Environment Programme (UNEP) Synthesis Report (2011).
  2. F. Walrevens and J. Newman, Risk Assessment of Illegal Trade in HCFCs, pp. 3-13, United Nations Environment Programme (UNEP) (2011).
  3. G. Angelinoa and C. Invernizzib, Experimental investigation on the thermal stability of some new zero ODP refrigerants, Int. J. Refrig., 26, 51-58 (2003). https://doi.org/10.1016/S0140-7007(02)00023-3
  4. H. Yu, E. M. Kennedy, A. A. Adesina, and B. Z. Dlugogorski, A review of CFC and halon treatment technologies - The nature and role of catalysts, Catal. Surv. Asia, 10, 40-54 (2006). https://doi.org/10.1007/s10563-006-9003-z
  5. S. D. Kim, E. K. Kim, H. R. Kim, Y. P. Lee, J. H. Park, S. H. Byun, H. J. Seo, and S. H. Lee, Estimation of emission factor (residual rate) and inventory of HFC-134a from mobile air conditioners of scrap vehicles, J. Korean Soc. Waste Manag., 29, 650-661 (2012).
  6. H. J. Kwon, Clean air conservation act related to refrigeration and air conditioning equipment, Korean Int. J. Air-Cond. Refrig. Eng., 43, 18-29 (2014).
  7. C. D. Thompson, E. G. Robertson, and D. McNaughton, High-resolution FTIR spectroscopy of chlorodifluoromethane: v2 and v7, Chem. Phys. 279, 239-248 (2002). https://doi.org/10.1016/S0301-0104(02)00454-8
  8. T.-H. Kim, S. Choi, and D.-W. Park, Numerical simulation on the influence of water spray in thermal plasma treatment of $CF_4$ gas, Curr. Appl. Phys., 12, 509-514 (2012). https://doi.org/10.1016/j.cap.2011.08.010
  9. J.-H. Lee, S. M. Hwang, D. W. Lee, and G. S. Heo, Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phasemicroextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air, Bull. Korean Chem. Soc., 23, 488-496 (2002). https://doi.org/10.5012/bkcs.2002.23.3.488
  10. B. R. Miller, R. F. Weiss, P. K. Salameh, T. Tanhua, B. R. Greally, J. Muhle, and P. G. Simmonds, Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 80, 1536-1545 (2008) https://doi.org/10.1021/ac702084k
  11. A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, Atmospheric lifetimes of long-lived halogenated species, Science, 259, 194-199 (1993). https://doi.org/10.1126/science.259.5092.194
  12. A. McCullocha and A. A. Lindley, Global emissions of HFC-23 estimated to year 2015, Atmos. Environ., 41, 1560-1566 (2007). https://doi.org/10.1016/j.atmosenv.2006.02.021
  13. G. J. M. Velders, S. O. Andersen, J. S. Daniel, D. W. Fahey, and M. McFarland, The importance of the Montreal Protocol in protecting climate, Proc. Natl. Acad. Sci. U.S.A., 104, 4814-4819 (2007). https://doi.org/10.1073/pnas.0610328104
  14. I. Halonen, J. Tarhanen, T. Kopsa, J. Palonen, H. Vilokki, and J. Ruuskanen, Formation of polychlorinated dioxins and dibenzofurans in incineration of refuse derived fuel and biosludge, Chemosphere, 26, 1869-1880 (1993). https://doi.org/10.1016/0045-6535(93)90080-O
  15. H. Huang and A. Buekensl, On the mechanisms of dioxin formation in combustion processes, Chemosphere, 32, 4099-4117 (1995).
  16. Y. H. Kim, S. H. Jun, and C. G. Shin, Study on optimal treatment of waste gas, National Institute of Environmental Research, South Korea, 9-120 (2013).
  17. R. T. Deam, A. R. Dayal, T. McAllister, A. E. Mundy, R. J. Western, L. M. Besley, A. J. D. Farmer, E. C. Horrigan, and A. B. Murphy, Interconversion of chlorofluorocarbons in plasmas, J. Chem. Soc. Chem. Commun., 3, 347-348 (1995).
  18. K. Yanagisawa, T. Kozawa, A. Onda, M. Kanazawa, J. Shinohara, T. Takanami, and Mshiraishi, A novel decomposition technique of friable asbestos by $CHClF_2$-decomposed acidic gas, J. Hazard. Mater., 163, 593-599 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.017
  19. M. Jasinski, P. Szczucki, M. Dors, J. Mizeraczyk, M. Lubanski, and Z. Zakrzewski, Decomposition of fluorohydrocarbons in atmospheric-pressure flowing air using coaxial-line-based microwave torch plasma, Czechoslov. J. Phys., 50, 285-288 (2000).
  20. H. W. Park, Control of Air Pollutants in a Wet Chemical Reactor Combined with Corona Discharge, PhD Dissertation, Inha University, Incheon, Korea (2015).