DOI QR코드

DOI QR Code

Effect of Ag Addition on ZnO for Photo-electrochemical Hydrogen Production

ZnO를 이용한 광 전기화학적 수소제조 반응 시 Ag 첨가 영향

  • Kwak, Byeong Sub (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Sung-Il (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Misook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2017.01.18
  • Accepted : 2017.03.01
  • Published : 2017.04.10

Abstract

In this study, ZnO, which is widely known as a non $TiO_2$ photocatalyst, was synthesized using coprecipitation method and Ag was added in order to improve the catalytic performance. The physicochemical characteristics of the synthesized ZnO and Ag/ZnO particles were checked using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL), and photocurrent measurements. The performance of catalysts was tested by $H_2$ production using the photolysis of $H_2O$ with MeOH. By adding Ag which plays a role as an electron capture on the ZnO catalyst, the performance increased due to the recombination of excited electrons and holes. In particular, $8.60{\mu}mol\;g^{-1}$ $H_2$ was produced after 10 h reaction over the 0.50 mol% Ag/ZnO.

본 연구에서는 공침법을 이용해 ZnO를 합성하였고, 촉매의 성능을 개선하고자 Ag를 첨가하였다. 합성한 촉매의 물리 화학적 특성은 X-선 회절분석(XRD), 자외선-가시선 분광광도계(UV-visible spectroscopy), 전자주사현미경(SEM), 에너지 분산형 분광분석법(EDS), 광 발광(photoluminescence), 광 전류 측정(photocurrent)을 이용해 확인하였다. 촉매는 물과 메탄올 분해로부터 수소 제조를 통해 성능을 평가하였다. 그 결과 전자 캡쳐 역할을 하는 Ag 첨가로 인해 들뜬 전자와 정공 사이의 재결합이 줄어들어 촉매의 성능이 향상되었으며, 특히 0.50 mol% Ag/ZnO 촉매를 사용하였을 때 10 h 반응 후 $8.60{\mu}mol\;g^{-1}$의 수소가 발생하였다.

Keywords

References

  1. Z. l. Messaoudani, F. Rigas, M. D. B. Hamid, and C. R. C. Hassan, Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review, Int. J. Hydrogen Energy, 41, 17511-17525 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.171
  2. F. J. Lopez-Tenllado, J. Hidalgo-Carrillo, V. Montes, A. Marinas, F. J. Urbano, J. M. Marinas, L. Ilieva, T. Tabakova, and F. Reid, A comparative study of hydrogen photocatalytic production from-glycerol and propan-2-ol on M/$TiO_2$ systems (M = Au, Pt, Pd), Catal. Today, 280, 58-64 (2017). https://doi.org/10.1016/j.cattod.2016.05.009
  3. F. Ahmadi, M. Haghighi, and H. Ajamein, Sonochemically coprecipitation synthesis of CuO/ZnO/$ZrO_2$/$Al_2O_3$ nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming, J. Mol. Catal. A, 421, 196-208 (2016). https://doi.org/10.1016/j.molcata.2016.05.027
  4. A. Kaftan, M. Kusche, M. Laurin, P. Wasserscheid, and J. Libuda, KOH-promoted Pt/$Al_2O_3$ catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study, Appl. Catal. B, 201, 169-181 (2017). https://doi.org/10.1016/j.apcatb.2016.08.016
  5. X. Huang, C. Ji, C. Wang, F. Xiao, N. Zhao, N. Sun, W. Wei, and Y. Sun, Ordered mesoporous CoO-NiO-$Al_2O_3$ bimetallic catalysts with dual confinement effects for $CO_2$ reforming of $CH_4$, Catal. Today, 281, 241-249 (2017). https://doi.org/10.1016/j.cattod.2016.02.064
  6. P. Nikolaidis and A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev., 67, 597-611 (2017). https://doi.org/10.1016/j.rser.2016.09.044
  7. A. R. Aparna, V. Brahmajirao, and T. V. Karthikeyan, Review on synthesis and characterization of gallium phosphide, Procedia Mater. Sci., 6, 1650-1657 (2014). https://doi.org/10.1016/j.mspro.2014.07.150
  8. F. Vaquero, R. M. Navarro, and J. L. G. Fierro, Evolution of the nanostructure of CdS using solvothermal synthesis at different temperature and its influence on the photoactivity for hydrogen production, Int. J. Hydrogen Energy, 41, 11558-11567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.039
  9. X. Wang, S. Zhang, Y. Xie, H. Wang, H. Yu, Y. Shen, Z. Li, S. Zhang, and F. Peng, Branched hydrogenated $TiO_2$ nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light, Int. J. Hydrogen Energy, 41, 20192-20197 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.029
  10. A. Perez-Larios, R. Lopez, A. Hernandez-Gordillo, F. Tzompantzi, R. Gomez, and L. M. Torres-Guerra, Improved hydrogen production from water splitting using $TiO_2$-ZnO mixed oxides photocatalysts, Fuel, 100, 139-143 (2012). https://doi.org/10.1016/j.fuel.2012.02.026
  11. K. Yu, C. Zhang, Y. Chang, Y. Feng, Z. Yang, T. Yang, L.-L. Lou, and S. Liu, Novel three-dimensionally ordered macroporous $SrTiO_3$ photocatalysts with remarkably enhanced hydrogen production performance, Appl. Catal. B, 200, 514-520 (2017). https://doi.org/10.1016/j.apcatb.2016.07.049
  12. M.-Y. Xie, K.-Y. Su, X.-Y. Peng, R.-J. Wu, M. Chavali, and W.-C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped $TiO_2$-ZnO under visible light, J. Taiwan Inst. Chem. Eng., 70, 161-167 (2017). https://doi.org/10.1016/j.jtice.2016.10.034
  13. M. J. Sampaio, J. W. L. Oliveira, C. I. L. Sombrio, D. L. Baptista, S. R. Teixeira, S. A. C. Carabineiro, C. G. Silva, and J. L. Faria, Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol, Appl. Catal. A, 518, 198-205 (2016). https://doi.org/10.1016/j.apcata.2015.10.013
  14. T. Di, B. Zhu, J. Zhang, B. Cheng, and J. Yu, Enhanced photocatalytic $H_2$ production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst, Appl. Surf. Sci., 389, 775-782 (2016). https://doi.org/10.1016/j.apsusc.2016.08.002
  15. S. Kuriakose, B. Satpati, and S. Mohaptatra, Enhanced photocatalytic of Co doped ZnO nanorodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys., 16, 12741-12749 (2014). https://doi.org/10.1039/c4cp01315h
  16. M.-S. Park and M. Kang, The preparation of the anatase and rutile forms of Ag-$TiO_2$ and hydrogen production from methanol/water decomposition, Mater. Lett., 62, 183-187 (2008). https://doi.org/10.1016/j.matlet.2007.04.105
  17. S. Kuriakose, V. Choudhary, B. Satpati, and S. Mohapatra, Enhanced photocatalytic activity of Ag-ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method, Beilstein J. Nanotechnol., 5, 639-650 (2014). https://doi.org/10.3762/bjnano.5.75
  18. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nano-catalyst: Correlation between structure and property, J. Phys. Chem. C, 122, 10773-10777 (2008).
  19. C.-J. Chang, Z. Lee, K.-W. Chu, and Y.-H. Wei, $CoFe_2O_4@ZnS$ core-shell spheres as magnetically recyclable photocatalysts for hydrogen production, J. Taiwan Inst. Chem. Eng., 66, 386-393 (2016). https://doi.org/10.1016/j.jtice.2016.06.033
  20. Y. Zhang, Y. Hu, H. Zeng, L. Zhong, K. Liu, H. Cao, W. Li, and H. Yan, Silicon carbide recovered form photovoltaic industry waste as photocatalysts for hydrogen production, J. Hazard. Mater., 329, 22-29 (2017). https://doi.org/10.1016/j.jhazmat.2017.01.023
  21. Q. Yang, P. Peng, and Z. Xiang, Covalent organic polymer modified $TiO_2$ nanosheets as highly efficient photocatalysts for hydrogen generation, Chem. Eng. Sci., 162, 33-40 (2017). https://doi.org/10.1016/j.ces.2016.12.071
  22. H. Lee, Y. Park, and M. Kang, Synthesis of characterization of $Zn_xTi_yS$ and its photocatalytic activity for hydrogen production from methanol/water photo-splitting, J. Ind. Eng. Chem., 19, 1162-1168 (2013). https://doi.org/10.1016/j.jiec.2012.12.013
  23. N. Chouhan, R. Ameta, R. K. Meena, N. Mandawat, and R. Ghildiyal, Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation, Int. J. Hydrogen Energy, 41, 2298-2306 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.019
  24. P. A. Mangrulkar, A. A. Chilkalwar, A. V. Kotkondawar, N. R. Manwar, P. S. Antony, G. Hippargi, N. Labhsetwar, M. C. Trachtenberg, and S. S Rayalu, Plasmonic nanostructured Zn/ZnO composite enhances carbonic anhydrase driven photocatalytic hydrogen generation, J. $CO_2$ Util., 17, 207-212 (2017). https://doi.org/10.1016/j.jcou.2016.11.013
  25. S. N. H. M. Daud, C. Haw, W. Chiu, Z. Aspanut, M. Chia, N. H. Khanis, P. Khiew, and M. A. A. Hamid, ZnO nanonails: Organometallic synthesis, self-assembly and enhanced hydrogen gas production, Mater. Sci. Semicond. Process., 56, 228-237 (2016). https://doi.org/10.1016/j.mssp.2016.08.021
  26. A. Tumuluri, K. L. Naidu, and K. C. J. Raju, Band gap determination using Tauc's plot for $LiNbO_3$ thin films, Int. J. Chem. Tech. Res., 6, 3353-3356 (2014).
  27. G. Varughese, K. T. Usha, and A. S. Kumar, Characterisation and band gap energy of wurtzite ZnO:La nanocrystalites, Int. J. Latest Res. Sci. Technol., 3, 133-136 (2014).