DOI QR코드

DOI QR Code

Electrospinning Method-based CNF Properties Analysis and Its Application to Electrode in Electrolysis Process

lectrospinning Method 기반 CNF의 물성분석과 전기분해 공정에서 전극으로의 응용

  • Hwang, In-Hyuck (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Choi, Sung-Yeol (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Sang Hyun (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Ye-Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung-Chul (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 황인혁 (경기대학교 일반대학원 환경에너지공학과) ;
  • 최성열 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상현 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2017.02.07
  • Accepted : 2017.03.14
  • Published : 2017.04.10

Abstract

In this study, CNF (carbon nanofiber) was prepared with different process variables of electrospinning method. Morphology of CNF was observed by SEM, and main parameters to form the CNF were applied voltage, TCD, polymer concentration and heat treatment condition. Comparison of toluene removal efficiency, as applying the prepared CNF to electrodes of an electrolysis process, showed the direct effect of cathode on electrolysis as well as anode.

본 연구에서는 electrospinning method의 공정변수를 다르게 하여 CNF (carbon nanofiber)를 제조하였다. 제조된 CNF의 섬유의 형태, 직경 등의 변화를 SEM 분석을 통해 관찰하였으며 인가전압, TCD (tip to collecor distance), 고분자 용액의 농도, 열처리 단계가 CNF 물성을 형성함에 있어 주요한 영향인자임을 확인하였다. 또한 서로 다른 물성으로 제조된 CNF를 전기분해 공정의 전극으로 적용하여 toluene의 제거 효율을 비교하였고, 이를 통해 anode 뿐만 아니라 cathode 역시 전기분해 효율에 직접적인 영향을 미침을 확인하였다.

Keywords

References

  1. S. H. Lee and J. H. Kim, The study of mutagenicity and organic pollutant in Nakdong river water basin, J. Korean Soc. Environ. Eng., 19(6), 785-798 (1997).
  2. F. X. Prenafeta-Boldu, J. Vervoort, J. T. Grotenhuis, and J. W. Van Groenestijin, Substrate interaction during the biodegradation of BTEX hydrocarbons by the fungus cladophialophora sp. Strain T1, Appl. Environ. Microbiol., 68(6), 2660-2665 (2002). https://doi.org/10.1128/AEM.68.6.2660-2665.2002
  3. IRIS (Intergrated Risk Information System), US EPA (1993).
  4. M. K. Kim, Y. S. Park, and Y. Chung, Studies on the quantitative analysis and the health effect of VOCs in environment, Anal. Sci. Technol., 13(1), 55-65 (2000).
  5. Y. G. Hwang and S. Y. Chu, Electrochemical treatment of the wastewater of azo dye, Res. Inst. Eng. Technol. Kyungnam University, 13, 139-148 (1995).
  6. D. S. Kim and Y. S. Park, Electrochemical degradation of phenol by electro-fenton process, J. Environ. Health Sci., 35(3), 201-208 (2009).
  7. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, 11-41 (2004). https://doi.org/10.1016/j.seppur.2003.10.006
  8. M. Panizza, A. Barbucci, R. Ricotti, and G. Cerisola, Electrochemical degradation of methylene blue, Sep. Purif. Technol., 54, 382-387 (2007). https://doi.org/10.1016/j.seppur.2006.10.010
  9. S. H. Park and I. S. Kim, Disinfection of harmful organisms for sea water using electrolytic treatment system, Kor. Inst. Navig. Port Res., 28(10), 995-960 (2004).
  10. H. K. Kim, J. Y. Jeong, J. W. Shin, and J. Y. Park, Removal of COD and T-N caused by ETA from nuclear power plant wastewater using 3D packed bed bipolar electrode system, J. Kor. Soc. Water Wastewater, 26(3), 409-421 (2012). https://doi.org/10.11001/jksww.2012.26.3.409
  11. H. S. Jin and J. H. Lee, Removal of Lead from seawater using electrolysis and coprecipitation method, J. Korean Soc. Environ. Eng., 32(2), 149-154 (2010).
  12. J. S. Kim, Electrochemical oxidation of representative inorganic and organic contaminants in an in situ electrochemical reactor, PhD dissertation, University of Washington, Washington, USA (2006).
  13. K. N. Jung, J. I. Lee, S. Yoon, S. H. Yeon, W. Chang, K. H. Shin, and J. W. Lee, Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries, J. Mater. Chem., 22, 21845-21848 (2012). https://doi.org/10.1039/c2jm34500e
  14. G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance, ACS Nano., 4(4), 2382-2390 (2010). https://doi.org/10.1021/nn100126w
  15. L. Ji, K. H. Jung, A. J. Medford, and X. Zhang, Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization, J. Mater. Chem., 19, 4992-4997 (2009). https://doi.org/10.1039/b903165k
  16. J. H. Park, Y. W. Ju, S. H. Park, H. R. Jung, K. S. Yang, and W. J. Lee, Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC, J. Appl. Electrochem., 39, 1229-1236 (2009). https://doi.org/10.1007/s10800-009-9787-4
  17. B. H. Kim, S. K. Nataraj, K. S. Yang, and H. G. Woo, Synthesis, characterization, and photocatalytic activity of $TiO_2$/$SiO_2$ nanoparticles loaded on carbon nanofiber web, J. Nanosci. Nanotechnol., 10(5), 3331-3335 (2010). https://doi.org/10.1166/jnn.2010.2289
  18. G. Y. Oh, Y. W. Ju, H. R. Jung, and W. J. Lee, Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption, J. Anal. Appl. Pyrolysis, 81, 211-217 (2008). https://doi.org/10.1016/j.jaap.2007.11.006
  19. G. Y. Oh, Y. W. Ju, M. Y. Kim, H. R. Jung, H. J. Kim, and W. J. Lee, Adsorption of toluene on carbon nanofibers prepared by electrospinning, Sci. Total Environ., 393, 347-347 (2008).
  20. C. Zhang, X. Yuan, L. Wu, Y. Han, and J Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats, Eur. Polym. J., 41, 423-432 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.027
  21. X. Yuan, Y. Zhang, C. Dong, and J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning, Polym. Int., 53(11), 1704-1710 (2004). https://doi.org/10.1002/pi.1538
  22. J. S. Bedi, D. W. Lester, Y. X. Fang, J. F. C. Turner, J. Zhou, S. M. Alfadul, C. Perry, and Q. Chen, Electrospinning of poly(methyl methacrylate) nanofibers in a pump-free process, J Polym. Eng., 33(5), 453-461 (2013).
  23. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Characterization of gelatin nanofiber prepared form gelatin- formic acid solution, Polymer, 46(14), 5094-5102 (2005). https://doi.org/10.1016/j.polymer.2005.04.040
  24. Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, J. Biomed. Mater. Res. B, 72(1), 156-165 (2005).
  25. J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, and Z. Guo, In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites, J. Mater. Chem., 20, 4937-4948 (2010). https://doi.org/10.1039/c0jm00063a
  26. H. M. Lee, K. H. An, and B. J. Kim, Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers, Carbon Lett., 15(2), 146-150 (2014). https://doi.org/10.5714/CL.2014.15.2.146
  27. A. R. Kim, H. J. Park, Y. S. W, T. Y. Lee, J. K. Lee, and J. H. Lim, Electrochemical treatment of dye wastewater using Fe, $RuO_2$/Ti, $PtO_2$/Ti, $IrO_2$/Ti and graphite electrodes, Clean Technol., 22(1), 16-28 (2016). https://doi.org/10.7464/ksct.2016.22.1.016
  28. N. Jiang and H. M. Ment, The durability of different elements doped manganese dioxide-coated anodes for oxygen evolution in seawater electrolysis, Surf. Coat. Technol., 206(21), 4362-4367 (2012). https://doi.org/10.1016/j.surfcoat.2012.04.059
  29. Z. Kato, J. Bhattarai, N. Kumagai, K. Izumiya, and K. Hashimoto, Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen product, Appl. Surf. Sci., 257(19), 8230-8236 (2011). https://doi.org/10.1016/j.apsusc.2010.12.042
  30. H. Fan and M. Han, Improved performance and stability of Ag-infiltrated nanocomposite $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$-${\delta}$-$(Y_2O_3)_{0.08}(ZrO_2)_{0.92}$ oxygen electrode for $H_2O$/$CO_2$ co-electrolysis, J. Power Sources., 336(30), 179-185 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.046