DOI QR코드

DOI QR Code

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Ghazvinian, Abdolhadi (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Najigivi, Alireza (Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology)
  • Received : 2016.09.11
  • Accepted : 2017.01.13
  • Published : 2017.04.25

Abstract

Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Keywords

References

  1. Aggelis, D.G., Shiotani, T., Momoki, S. and Hirama, A. (2009), "Combined stress wave techniques for damage characterization of composite concrete elements", Am. Concrete Inst. Mater. J., 107(5), 469-473.
  2. Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater., 25(11), 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
  3. Al-Khalaf, M.N. and Yousif, H.A. (1984), "Use of rice husk ash in concrete", J. Cement Compos. Light. Concrete, 6(4), 241-248. https://doi.org/10.1016/0262-5075(84)90019-8
  4. ASTM C109 (1993), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, Annual Book of ASTM Standards.
  5. ASTM C150 (2003), Standard Specification for Portland Cement, Annual Book of ASTM Standards.
  6. Beaudoin, J.J., Drame, H., Raki, L. and Alizadeh, R. (2009), "Formation and properties of CSH-PEG nano-structures", Mater. Struct., 42(7), 1003-1014. https://doi.org/10.1617/s11527-008-9439-x
  7. Belhadj, B., Bederina, M., Benguettache, K. and Queneudec, M. (2014), "Effect of the type of sand on the fracture and mechanical properties of sand concrete", Adv. Concrete Constr., 2(1), 13-27. https://doi.org/10.12989/acc2014.2.1.013
  8. Elices, M., Planas, J. and Guinea, G.V. (2000), "Fracture mechanics applied to concrete", Eur. Struct. Integr. Soc., 26, 183-210.
  9. Fan, X., Hu, S. and Lu, J. (2016), "Damage and fracture processes of concrete using acoustic emission parameters", Comput. Concrete, 18(2), 267-278. https://doi.org/10.12989/cac.2016.18.2.267
  10. Ferraris, C.F. and Gaidis, J.M. (1992), "Connection between the rheology of concrete and rheology of cement paste", Mater. J., 89(4), 388-393.
  11. Fu, C.Q., Ma, Q.Y., Jin, X.Y., Shah, A.A. and Tian, Y. (2014), "Fracture property of steel fiber reinforced concrete at early age", Comput. Concrete, 13(1), 31-47. https://doi.org/10.12989/cac.2014.13.1.031
  12. Fu, X. and Chung, D.D.L. (1998), "Submicron-diameter-carbonfilament cement-matrix composites", Carbon, 36(4), 459-462. https://doi.org/10.1016/S0008-6223(98)90017-3
  13. Girao, A.V., Richardson, I.G., Porteneuve, C.B. and Brydson, R.M.D. (2007), "Composition, morphology and nanostructure of C-S-H in white Portland cement pastes hydrated at 55C", Cement Concrete Res., 37(12), 1571-1582. https://doi.org/10.1016/j.cemconres.2007.09.001
  14. Grosse, C.U. and Ohtsu, M. (2008), Acoustic Emission Testing, Basic for Research Applications in Civil Engineering, Springer, Leipzig, Germany.
  15. Haneef, T.K., Kumari, K., Mukhopadhyay, C.K., Rao, B.P. and Jayakumar, T. (2013), "Influence of fly ash and curing on cracking behavior of concrete by acoustic emission technique", Constr. Build. Mater., 44, 342-350. https://doi.org/10.1016/j.conbuildmat.2013.03.041
  16. Heidari, A. and Tavakoli, D. (2013), "A study of the mechanical properties of ground ceramic powder concrete incorporating nano-$SiO_2$ particles", Constr. Build. Mater., 38, 255-264. https://doi.org/10.1016/j.conbuildmat.2012.07.110
  17. Jo, B.W., Kim, C.H., Tae, G.H. and Park, J.B. (2007), "Characteristics of cement mortar with nano-$SiO_2$ particles", Constr. Build. Mater., 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  18. Kumar, S. and Barai, S.V. (2012), "Size-effect of fracture parameters for crack propagation in concrete: A comparative study", Comput. Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
  19. Kuo, W., Lin, K., Chang, W. and Luo, H. (2006), "Effects of nano-materials on properties of waterworks sludge ash cement paste", J. Indust. Eng. Chem. Seoul, 12(5), 702.
  20. Kurz, J.H., Finck, F., Grosse, C.U. and Reinhardt, H.W. (2006), "Stress drop and stress redistribution in concrete quantified over time by the b-value analysis", Struct. Health Monit., 5(1), 69-81. https://doi.org/10.1177/1475921706057983
  21. Li, H., Zhang, M.H. and Ou, J.P. (2006), "Abrasion resistance of concrete containing nano-particles for pavement", Wear, 260(11), 1262-1266. https://doi.org/10.1016/j.wear.2005.08.006
  22. Li, H., Zhang, M.H. and Ou, J.P. (2007), "Flexural fatigue performance of concrete containing nano-particles for pavement", J. Fatig., 29(7), 1292-1301. https://doi.org/10.1016/j.ijfatigue.2006.10.004
  23. Minemura, O., Sakata, N., Yuyama, S., Okamoto, T. and Maruyama, K. (1998), "Acoustic emission evaluation of an arch dam during construction cooling and grouting", Constr. Build. Mater., 12(6), 385-392. https://doi.org/10.1016/S0950-0618(97)00082-2
  24. Najigivi, A., Khaloo, A. and Rashid, S.A. (2013), "Investigating the effects of using different types of $SiO_2$ nanoparticles on the mechanical properties of binary blended concrete", Compos. Part B: Eng., 54, 52-58. https://doi.org/10.1016/j.compositesb.2013.04.035
  25. Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603-013-0486-4
  26. Ohtsu, M. and Tomoda, Y. (2008), "Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission", ACI Mater. J., 105(2), 194-199.
  27. Purton, M.J. (1973), "A note on volume changes in the lime-silica reaction", Cement Concrete Res., 3(6), 833-836. https://doi.org/10.1016/0008-8846(73)90016-1
  28. Raki, L., Beaudoin, J., Alizadeh, R., Makar, J. and Sato, T. (2010), "Cement and concrete nanoscience and nanotechnology", Mater., 3(2), 918-942. https://doi.org/10.3390/ma3020918
  29. Sabri, M., Ghazvinian, A. and Nejati, H.R. (2016), "Effect of particle size heterogeneity on fracture toughness and failure mechanism of rocks", J. Rock Mech. Min. Sci., 81, 79-85.
  30. Schechinger, B. and Vogel, T. (2007), "Acoustic emission for monitoring a reinforced concrete beam subject to four-pointbending", Constr. Build. Mater., 21(3), 483-490. https://doi.org/10.1016/j.conbuildmat.2006.04.003
  31. Soulioti, D., Barkoula, N.M., Paipetis, A., Matikas, T.E., Shiotani, T. and Aggelis, D.G. (2009), "Acoustic emission behavior of steel fibre reinforced concrete under bending", Constr. Build. Mater., 23(12), 3532-3536. https://doi.org/10.1016/j.conbuildmat.2009.06.042
  32. Wansom, S., Janjaturaphan, S. and Sinthupinyo, S. (2009), "Pozzolanic activity of rice husk ash: Comparison of various electrical methods", J. Met. Mater. Min., 19(2), 1-7.
  33. Zhang, M.H. and Li, H. (2011), "Pore structure and chloride permeability of concrete containing nano-particles for pavement", Constr. Build. Mater., 25(2), 608-616. https://doi.org/10.1016/j.conbuildmat.2010.07.032
  34. Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior of fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261
  35. Zhang, P., Guan, Q.Y., Liu, C.H. and Li, Q.F. (2013), "Study on notch sensitivity of fracture properties of concrete containing nano-$SiO_2$ particles and fly ash", J. Nanomater., 3.
  36. Zhang, P., Liu, C.H., Li, Q.F., Zhang, T.H. and Wang, P. (2014c), "Fracture properties of steel fibre reinforced high-performance concrete containing nano-$SiO_2$ and fly ash", Curr. Sci., 106(7), 980.
  37. Zhang, P., Zhao, Y.N., Li, Q.F., Zhang, T.H. and Wang, P. (2014a), "Mechanical properties of fly ash concrete composite reinforced with nano-$SiO_2$ and steel fibre", Curr. Sci., 106(11), 1529.
  38. Zhang, P., Zhao, Y.N., Liu, C.H., Wang, P. and Zhang, T.H. (2014b), "Combined effect of nano-$SiO_2$ particles and steel fibers on flexural properties of concrete composite containing fly ash", Sci. Eng. Compos. Mater., 21(4), 597-605.
  39. Zhang, X., Chang, W., Zhang, T. and Ong, C.K. (2000), "Nanostructure of calcium silicate hydrate gels in cement paste", J. Am. Ceram. Soc., 83(10), 2600-2604. https://doi.org/10.1111/j.1151-2916.2000.tb01595.x

Cited by

  1. Effect of thermal-induced microcracks on the failure mechanism of rock specimens vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.093
  2. Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.015