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Carbon fibers (CFs) have a unique combination of outstanding mechanical, physical, and 
chemical properties and are among the materials most frequently used in the preparation of a 
large variety of composites [1-5]. CF-reinforced polymer composites have been widely used 
in many advanced technological fields, such as aerospace, engineering, sporting goods, au-
tomobiles, and marine industry during the past few decades due to their excellent properties, 
including high strength-to-weight ratios, light weight, high thermal and electrical conductiv-
ity, and relative ease of processing [6-10].

However, CFs have poor wettability and adsorption when used with most polymer matri-
ces to make CF-reinforced composites because pristine CFs have chemically inert surfaces 
and low surface energy. Thus, the properties of the composites are determined not only by 
the CFs and the polymer matrix, but also by the interface and interphase formed between 
the two constituents. In general, interfacial adhesion is dominated by the surface properties 
of CFs (roughness, porosity, functional groups) and the chemical character of the matrix. 
Favorable interfacial adhesion can efficiently transfer stress from the matrix to the CFs. 
This plays a major role in determining the mechanical performance and reliability of the 
composites [11-14]. 

Various surface modification techniques have been developed to increase the number of 
surface functional groups and thus enhance the interactions and/or adhesion between the CFs 
and the matrix. Different surface treatment methods have been used: gas-phase, wet chemi-
cal, or electrochemical oxidation, ozone treatment, polymer coating (sizing), and plasma 
treatment [15-17]. These treatments of CFs improve the interfacial bonding of the final com-
posites to some extent, but unfortunately require high energy consumption. Moreover, dur-
ing the manufacturing process, commercial CFs are always coated with a sizing layer (epoxy 
resin) after surface chemical treatment. The epoxy coatings on the surfaces of the CFs are 
often not removed during the fabrication of CF-reinforced polymer composites. The sizing 
agents can alter the surface properties of the CFs, as well as their wettability and chemical 
reactions with the polymer matrix [18-20]. The epoxy matrix in the composite provides 
bulk and enables the transfer of loads between fibers. The diglycidylether of bisphenol A 
(DGEBA) is the most commonly used epoxy resin. However, the DGEBA matrix is rela-
tively brittle and has little tensile strength. Therefore, many epoxy resin formulations need 
to be toughened [21,22].

Thermally latent initiators are inert under normal conditions, i.e., at ambient temperature 
and light, and become active only under external stimulation such as heating or photoirradia-
tion. Therefore, a thermally latent initiator can easily control the initiation and curing process 
of an epoxy system, which is desirable for the enhancement of both pot life and handling of 
epoxy resins [23-26].

In this study, we prepared CF-reinforced epoxy composites using DGEBA as a matrix, 
epoxidized castor oil (ECO) as a reactive diluent, and carbon fiber cloth (CFC) as a reinforc-
ing agent. We investigated mechanical and electrical properties of the DGEBA/ECO/CFC 
composites using a universal testing machine, an Izod impact tester, and a direct current 
(DC) resistance tester.

The epoxy resin used in this study was DGEBA (E-51) supplied by Feicheng Deyuan 
Chemical Co., Ltd. of China, which had an epoxide equivalent weight (EEW) of 185–208 g/
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machine (Instron Model WDW3010, Korea) according to GB/T 
9341-2000 with a three-point bend configuration. The sample 
size was 5×10×100 mm3. Impact strength tests were performed 
using an Izod impact tester pursuant to GB/T 1843-2008. The 
specimen size was 4×10×80 mm3. The resistivity was measured 
at room temperature using a DC resistance tester (AST10A) 
pursuant to GB/T 24525-2009. The sample size was 5×50×50 
mm3.

The DGEBA/ECO/CFC composites were prepared via a 
hot melt lay-up plus a compression-curing process, and their 
mechanical and electrical properties were investigated. Fig. 1 
shows the flexural strength of the DGEBA/ECO/CFC composites 
as a function of the amount of CFC incorporated. The flexural 
strength increased slightly from 64.4 to 70.4 MPa when 2 layers 
of non-sized CFC were used. This was due to poor wettability 
between the CFCs and the epoxy matrix. In contrast, the flexural 
strength increased from 64.4 to 84.6 MPa as the amount of CFC 
increased from 0 to 2 layers, and further increased from 84.6 to 
142.7 MPa as the amount of CFC increased from 2 to 4 layers. 
The flexural strength further increased from 142.7 to 216 MPa 
when the amount of CFC was increased from 4 to 5 layers. These 
results can be explained as follows: epoxy sizing confers on the 
CFC an equivalent electron donor and acceptor character, which 
enhances the wettability of the CFCs by DGEBA, resulting in 
improved interfacial adhesion between the CFCs and the epoxy 
matrix [28,29].

Fig. 2 presents the impact strength of the DGEBA/ECO/CFC 
composites as a function of CFC amount. As shown in Fig. 2, 
the neat DGEBA was very brittle, exhibiting an impact strength 
of 2.8 kJ/m2. The impact strength increased slightly from 2.8 to 
4.2 MPa when 2 layers of non-sized CFC were used. In contrast, 
the impact strengths of the composites containing 2, 3, 4, and 5 
layers of CFC were 8.9 times higher at 28.2 kJ/m2, 16.4 times 
higher at 49.6 kJ/m2, 24.6 times higher at 73.0 kJ/m2, and 32.3 
times higher at 95.1 kJ/m2, respectively. When the composites 
are under load, their strong interface can effectively transfer 
load from the matrix to the CFC, which can efficiently absorb 
the fracture energy, resulting in increases in the impact strengths 

eq. ECO was synthesized in our lab [23,25,27]. CFC (K12) was 
purchased from Jilin Jiyan High-Tech Fibers Co., Ltd., (China) 
and was sized with epoxy resin. The thermally latent initiator 
N-benzylpyrazinium hexafluoroantimonate (BPH) was synthe-
sized as in our previous work [24]. Hydroxyl multi-wall carbon 
nanotubes (CNTs) (MH5 111216) were supplied by the Chengdu 
Organic Chemicals Co., Ltd. of the Chinese Academy of Sci-
ences and had diameters of 20–30 nm, lengths of 10–30 m, and 
OH content of 1.76 wt%.

The ECO was synthesized as follows: castor oil (30 g), gla-
cial acetic acid (4.5 g), and phosphoric acid (0.3 g) were loaded 
into in a round, four-necked 250 mL flask equipped with a me-
chanical stirrer, thermocouple, and reflux condenser. The mix-
ture was heated to a constant temperature of 70°C. Then, 30% 
H2O2 (24 g) was slowly added to the flask and allowed to react at 
70°C for 4 h. After the reaction was complete, the crude product 
was filtered and washed with a distilled water and then distilled 
in a vacuum oven at 70°C for 1 h (yield 81%; EEW 510–520 
g/eq; Mn 1411 g/mol; Mw 1518 g/mol; hydroxyl number per 
molecule, 2.8).

The BPH was synthesized as follows: a solution of pyrazine 
(2.4 g) in acetonitrile (15 mL) was added to benzyl bromide 
(6.16 g) and the mixture was stirred and allowed to react at room 
temperature for 4 days. The precipitated solid was collected by 
filtration and washed with benzene. The solid product was dried 
in a vacuum and added to a solution of NaSbF6 in H2O (25 g). 
The mixture was then stirred for 30 min. The anion exchange 
product was filtered and washed with ether and then dried in a 
vacuum. The resulting product was re-crystallized from metha-
nol, and white crystals were obtained (yield 73%).

Non-sized CFCs were prepared as follows: to remove the siz-
ing agent from CFC surfaces, the CFCs were heated in acetone 
solvent at 75°C for 10 h.

The DGEBA/ECO/CFC composites were prepared as shown 
in Table 1. The designated amounts of DGEBA and ECO were 
mixed and heated in an oil bath at 80°C for 30 min, after which 
1wt% BPH was added. The mixture was stirred and degassed 
in a vacuum oven. The mixture was injected into a preheated 
mold in which a specific amount of CFC had been placed. The 
mold was compression-cured at temperatures ranging from 120 
to 180°C and a pressure of 4 MPa. The specimens were cut to 
suitable dimensions for mechanical tests.

The flexural tests were performed using a universal testing 

Table 1. Preparation conditions of DGEBA/ECO/CFC composites

Sample DGEBA
 (wt%)

ECO 
(wt%) CFC CFC amount 

(layer)

A 80 20 - 0

B 80 20 Non-sized CFC 2

C 80 20 Sized CFC 2

D 80 20 Sized CFC 3

E 80 20 Sized CFC 4

F 80 20 Sized CFC 5

DGEBA, diglycidylether of bisphenol A; ECO, epoxidized castor oil; CFC, 
carbon fiber cloth.

Fig. 1. Flexural strength of DGEBA/ECO/CFC composites as a function 
of the amount of CFC. DGEBA, diglycidylether of bisphenol A; ECO, 
epoxidized castor oil; CFC, carbon fiber cloth; CNTs, carbon nanotubes.
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The conductivity of a DGEBA/ECO/CFC composite 
containing 4 layers of CFC and 0.5 wt% CNTs was 2.38 S/
cm, which was 34% higher than that of DGEBA/ECO/CFC 
composite containing 4 layers of CFC. This was due to the high 
electrical conductivity of CNTs (104 S/cm). These results indicate 
that the electrical conductivity was significantly enhanced by the 
addition of a small amount of CNTs (0.5 wt%) to the DGEBA/
ECO/CFC composites [35,36].

In summary, the DGEBA/ECO/CFC composites were 
prepared and their mechanical and electrical properties were 
investigated using several techniques. The flexural strength and 
impact strength of the composites were slightly increased by the 
addition of non-sized CFCs. The flexural strength and impact 
strength of the composites increased significantly with the 
amount of CFC included. When 5 layers of CFC were used, the 
flexural strength and impact strength of the composite were 2.3 
and 32.3 times higher, respectively, than those of neat DGEBA. 
The electrical conductivity of the composites increased with 
the addition of CFC. The addition of a small amount of CNTs 
(0.5 wt%) to the DGEBA/ECO/CFC composites significantly 
enhanced their electrical conductivities without affecting their 
mechanical properties.
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