DOI QR코드

DOI QR Code

Determination of volatile compounds by headspace-solid phase microextraction - gas chromatography / mass spectrometry: Quality evaluation of Fuji apple

  • 투고 : 2017.02.02
  • 심사 : 2017.02.21
  • 발행 : 2017.04.25

초록

The volatile components in 'Fuji' apple were effectively determined by a headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 48 volatile components were identified and tentatively characterized based on National Institute of Standards and Technology (NIST) MS spectra library and the Kovats GC retention index I (RI). The harvested Fuji apples were divided into two groups: 1-methylcyclopropene (1-MCP) treated and non-treated (control) samples for finding important indicators between two groups. The major volatile components of both apples were 2-methylbutyl acetate, hexyl acetate, butyl 2-methylbutanoate, hexyl butanoate, hexyl 2-methylbutanoate, hexyl hexanoate and farnesene. No significant differences of these major compounds between 1-MCP treated and non-treated apples were observed during 1 month storage. Interestingly, the amount of off-flavors, including 1-butanol and butyl butanoate, in 1-MCP treated apples decreased over 5 months, and then increased after 7 months. However, non-treated apples did not show significant changes for off-flavors during 7 month storage (p<0.05). The non-treated apples also contained the higher levels of two off-flavors than 1-MCP treated apples. These two compounds, 1-butanol and butyl butanoate, can be used as quality indicators for the quality evaluation of Fuji apple.

키워드

참고문헌

  1. I. Lara, J. Graell, M. L. Lopez and G. Echeverria, Postharvest Biol. Technol., 39(1), 19-28 (2006). https://doi.org/10.1016/j.postharvbio.2005.09.001
  2. S. F. A. R. Reis, S. M. Rocha, A. S. Barros, I. Delgadillo, and M. a. Coimbra, Food Chem., 113(2), 513-521 (2009). https://doi.org/10.1016/j.foodchem.2008.07.093
  3. L. Dur and E. Costell, Food Sci. Tech. Int., 5(4), 299- 309 (1999). https://doi.org/10.1177/108201329900500402
  4. G. Echeverria, T. Fuentes, J. Graell, I. Lara, and M. L. Lopez, Postharvest Biol. Technol., 32(1), 29-44 (2004). https://doi.org/10.1016/j.postharvbio.2003.09.017
  5. G. Echeverria, M. T. Fuentes, J. Graell, M. L. Lopez, and J. Puy, J. Sci. Food Agric., 84(1), 5-20 (2004). https://doi.org/10.1002/jsfa.1554
  6. H. Young, K. Rossiter, M. Wang, and M. Miller, J. Agric. Food Chem., 47(12), 5173-5177 (1999). https://doi.org/10.1021/jf990276u
  7. G. Echeverria, J. Graell, M. L. Lopez, and I. Lara, Postharvest Biol. Technol., 31(3), 217-227 (2004). https://doi.org/10.1016/j.postharvbio.2003.09.003
  8. J. Dixon and E. W. Hewett, New Zeal. J. Crop Hortic. Sci., 28(3), 155-173 (2000). https://doi.org/10.1080/01140671.2000.9514136
  9. A. B. Marin, A. E. Colonna, K. Kudo, E. M. Kupferman, and J. P. Mattheis, Postharvest Biol. Technol., 51(1), 73-79 (2009). https://doi.org/10.1016/j.postharvbio.2008.06.008
  10. N. A. Mir, E. Curell, N. Khan, M. Whitaker, and R. M. Beaudry, J. Amer. Soc. Hort. Sci., 126(5), 618-624 (2001).
  11. J. Bai, E. A. Baldwin, K. L. Goodner, J. P. Mattheis, and J. K. Brecht, Hort Science, 40(5), 1534-1538 (2005).
  12. C. B. Watkins, J. F. Nock, and B. D. Whitaker, Postharvest Biol. Technol., 19(1), 17-32 (2000). https://doi.org/10.1016/S0925-5214(00)00070-3
  13. J. Bai, W. Haven, and J. K. Brecht, J. Amer. Soc. Hort. Sci., 129(4), 583-593 (2004).
  14. A. Rizzolo and A. Polesello, J. High Res. Chrom., 12(12), 824-827 (1989). https://doi.org/10.1002/jhrc.1240121214
  15. L. López, T. Lavilla, I. Recasens, M. Riba, and M. Vendrell, J. Agric. Food Chem., 46(2), 634-643 (1998). https://doi.org/10.1021/jf9608938
  16. Q. L. Ma, N. Hamid, A. E. D. Bekhit, J. Robertson, and T. F. Law, Microchem. J., 111, 16-24 (2013). https://doi.org/10.1016/j.microc.2012.10.007
  17. J. Song, B. Gardener, J. Holland, and R. Beaudry, J. Agric. Food Chem., 45(5), 1801-1807 (1997). https://doi.org/10.1021/jf9608229
  18. S. Saevels, J. Lammertyn, A. Z. Berna, E. A. Veraverbeke, C. Di Natale, and B. M. Nicolai, Postharvest Biol. Technol., 31(1), 9-19 (2004). https://doi.org/10.1016/S0925-5214(03)00129-7
  19. J. A. Abbott, R. A. Saftner, K. C. Gross, B. T. Vinyard, and J. Janick, Postharvest Biol. Technol., 33(2), 127- 140 (2004). https://doi.org/10.1016/j.postharvbio.2003.12.008
  20. E. Aprea, M. L. Corollaro, E. Betta, I. Endrizzi, M. L. Dematte, F. Biasioli, and F. Gasperi, Food Res. Int., 49(2), 677-686 (2012). https://doi.org/10.1016/j.foodres.2012.09.023
  21. J. Guo, T. Yue, and Y. Yuan, J. Food Sci., 77(10), 1090- 1096 (2012). https://doi.org/10.1111/j.1750-3841.2012.02914.x
  22. L. Ferreira, R. Perestrelo, M. Caldeira, and J. S. Camara, J. Sep. Sci., 32(11), 1875-1888 (2009). https://doi.org/10.1002/jssc.200900024
  23. H. H. Gan, C. Soukoulis, and I. Fisk, Food Chem., 146, 149-156 (2014). https://doi.org/10.1016/j.foodchem.2013.09.024
  24. A. Plotto, PhD thesis, Oregon State University, Corvallis, Oregon, USA, 193 (1998).
  25. A. A. Williams and M. Knee, Ann. Appl. Biol., 87(1), 127-131 (1977). https://doi.org/10.1111/j.1744-7348.1977.tb00670.x
  26. A. M. Karlsen, K. Aaby, H. Sivertsen, P. Baardseth, and M.R. Ellekjaer, Food Qual. Prefer., 10(4), 305-314 (1999). https://doi.org/10.1016/S0950-3293(99)00030-0
  27. E. M. Yahia, Hortic. Rev., 16(6), 197-234 (1994).