DOI QR코드

DOI QR Code

Influence of Quantum well Thickness Fluctuation on Optical Properties of InGaN/GaN Multi Quantum well Structure Grown by PA-MBE

  • Woo, Hyeonseok (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Kim, Jongmin (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Cho, Sangeun (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Jo, Yongcheol (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Roh, Cheong Hyun (Display Materials & Components Research Center, Korea Electronics Technology Institute) ;
  • Kim, Hyungsang (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Hahn, Cheol-Koo (Display Materials & Components Research Center, Korea Electronics Technology Institute) ;
  • Im, Hyunsik (Division of Physics and Semiconductor Science, Dongguk University)
  • Received : 2017.03.28
  • Accepted : 2017.05.04
  • Published : 2017.05.31

Abstract

An InGaN/GaN multiple quantum well (MQW) structure is grown on a GaN/sapphire template using a plasma-assisted molecular beam epitaxy (PA-MBE). The fluctuation of the quantum well thickness formed from roughly-grown InGaN layer results in a disordered photoluminescence (PL) spectrum. The surface morphologies of the InGaN layers with various In compositions are investigated by reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). A blurred InGaN/GaN hetero-interface and the non-uniform QW size is confirmed by high resolution transmission electron microscopy (HR-TEM). Inhomogeneity of the quantum confinement results in a degradation of the quantum efficiency even though the InGaN layer has a uniform In composition.

Keywords

References

  1. H. Woo, H. Jo, J. Kim, S. Cho, Y. Jo, C. H. Roh, J. H. Lee, Y. Seo, J. Park, H. Kim, C.-K. Hahn, and H. Im, Curr. Appl. Phys. 17 (2017) 1142-1147. https://doi.org/10.1016/j.cap.2017.05.003
  2. J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, J. J. Zhu, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, H. Yang, Y. T. Zhang, G. T. Du, and J. Alloy. Comp. 635 (2015) 82-86. https://doi.org/10.1016/j.jallcom.2015.02.052
  3. V. Hoffmann, A. Mogilatenko, C. Netzel, U. Zeimer, S. Einfeldt, M. Weyers, M. Kneissl, and J. Cryst. Growth 391 (2014) 46-51. https://doi.org/10.1016/j.jcrysgro.2013.12.046
  4. W. Yang and J. Joo, Appl. Sci. conv. Tech., 23 (2014) 139-144. https://doi.org/10.5757/ASCT.2014.23.3.139
  5. Y.-K. Juo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, Appl. Phys. Lett. 95 (2009) 011116. https://doi.org/10.1063/1.3176406
  6. U. Rossow, L. Hoffmann, H. Bremers, E. R. Buss, F. Ketzer, T. Langer, A. Hangleiter, T. Mehrtens, M. Schowalter, A. Rosenauer, and J. Cryst. Growth 414 (2015) 49-55. https://doi.org/10.1016/j.jcrysgro.2014.11.040
  7. S. R. Kwon, M.-Y. Ryu, and J. D. Song, Appl. Sci. Conv. Tech., 23 (2014) 387-391. https://doi.org/10.5757/ASCT.2014.23.6.387
  8. J. W. Oh, I.-W. Cho, M.-Y. Ryu, and J. D. Song, Appl. Sci. Conv. Tech., 24 (2015) 67-71. https://doi.org/10.5757/ASCT.2015.24.3.67
  9. S. Freytag, M. Feneberg, C. Berger, J. Blasing, A. Dadgar, G. Callsen, F. Nippert, A. Hoffmann, P. Y. Bokov, and R. Goldhahn, J. Appl. Phys. 120 (2016) 015703. https://doi.org/10.1063/1.4955426
  10. D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, J. Cryst. Growth 303 (2007) 314-317. https://doi.org/10.1016/j.jcrysgro.2006.12.054
  11. M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, J. Cryst. Growth 310 (2008) 4913-4915. https://doi.org/10.1016/j.jcrysgro.2008.08.021