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1. INTRODUCTION

Due to the demands for communication system capacity, 

spectrum efficiency, and quality improvement in the 

wireless communication field, an array antenna technique 

that can detect the direction of radio signals and is capable 

of beamforming has drawn much attention (Li et al. 2003, 

Vorobyov et al. 2003). Also, the array antenna technique is 

considered a core technology for next-generation mobile 

communication systems, and its importance has increased 

accordingly. With the recent increase in the jamming of 

the Global Navigation Satellite Systems (GNSS) around the 

globe, a technique that can effectively eliminate jamming 

signals using an array antenna and can precisely acquire/

track satellite navigation signals is required in the satellite 

navigation system field (Seco-Granados et al. 2005, Closas 

et al. 2009, Arribas et al. 2013, Lee et al. 2016).
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ABSTRACT

In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array 

processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array 

calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by 

electromagnetic simulation was used along with the Jahn’s channel model, which is an experimental channel model. Based 

on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of 

the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the 

performance improvement of array processing through array calibration was also examined.
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Major national research institutes in many countries, 

including Centre Tecnológic de Telecommunicacions 

de Catalunya, have studied satellite navigation signal 

acquisition/tracking techniques using an array antenna 

since the mid- to late 2000s (Seco-Granados et al. 2005, 

Closas et al. 2009, Arribas et al. 2013). However, most of 

these techniques can only be applied to uniform linear 

array (ULA) or uniform circular array (UCA) antenna, where 

each antenna element has an omnidirectional beam pattern 

and the spacing between the antenna elements is uniform 

at half of the used signal wavelength, and thus the available 

range is very limited. The ULA and UCA antennas are the 

most basic array antenna structures, and the influence 

between the antenna elements can be minimized when the 

spacing between the elements is half wavelength. Also, the 

problem definition as well as the received signal model can 

be simplified as each antenna element maintains the same 

beam in every direction. Accordingly, many studies are 

based on the ULA and UCA antennas.

However, in actual environments, various structures of 

array antennas are used depending on the environment and 

purpose of the application field, and each antenna element 
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generally has a directional beam pattern. In this regard, the 

beam patterns of the antenna elements could be different 

from each other. In addition, when the interval between the 

antenna elements is shorter than half wavelength due to the 

limitation of the size, the beam pattern of the single antenna 

element is changed due to the mutual coupling effect from 

the adjacent antenna elements. The uncertainties of an 

array antenna such as the position error of the antenna 

element, in addition to the directional beam pattern and 

mutual coupling effect, are known to be the factors for 

deteriorating the performance of the array processing 

technique (Li et al. 2003, Aksoy & Tuncer 2013, Liao et al. 

2013). Therefore, for the design of an actual array system, a 

signal processing technique considering the uncertainties 

of an array antenna is essential.

In this study, the performance of the direction detection 

and beamformer technique depending on the uncertainties 

of an array antenna was analyzed based on simulation. 

Also, sector-based array calibration for the alleviation of 

the uncertainty effect was introduced, and the performance 

improvement of the array processing technique was 

examined based on the calibration. By using the actual 

steering vector obtained through electromagnetic (EM) 

simulation and the Jahn’s channel model (Jahn et al. 

1996), which is an experiment-based channel model, the 

performance of the array processing technique in a realistic 

environment was investigated.

The contents of this paper are as follows. In Section 2, 

the signal model is explained; and in Section 3, the array 

processing technique and the array calibration technique for 

the alleviation of the array uncertainty effect are explained. In 

Section 4, the simulation environment and the performance 

of the array processing technique are analyzed. Lastly, the 

conclusions of this study are summarized in Section 5.

2. SIGNAL MODEL

2.1 GNSS and Unwanted Signal Models

In this section, the received signal model for an array 

antenna receiver consisting of M antenna elements is 

explained. When each navigation satellite periodically 

transmits its direct sequence spread spectrum (DSSS) 

signal, the receiver receives the line-of-sight (LOS) signal 

of DSSS, Nm multipath signals, and the signal where the 

interference signal and noise have been mixed. The signal 

received at the front-end of the receiver at time t can be 

expressed by Eq. (1).

	

uniform linear array (ULA) or uniform circular array (UCA) antenna, where each antenna 
element has an omnidirectional beam pattern and the spacing between the antenna elements is 
uniform at half of the used signal wavelength, and thus the available range is very limited. The 
ULA and UCA antennas are the most basic array antenna structures, and the influence between 
the antenna elements can be minimized when the spacing between the elements is half 
wavelength. Also, the problem definition as well as the received signal model can be simplified 
as each antenna element maintains the same beam in every direction. Accordingly, many studies 
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deteriorating the performance of the array processing technique (Li et al. 2003, Aksoy & Tuncer 
2013, Liao et al. 2013). Therefore, for the design of an actual array system, a signal processing 
technique considering the uncertainties of an array antenna is essential. 

In this study, the performance of the direction detection and beamformer technique 
depending on the uncertainties of an array antenna was analyzed based on simulation. Also, 
sector-based array calibration for the alleviation of the uncertainty effect was introduced, and the 
performance improvement of the array processing technique was examined based on the 
calibration. By using the actual steering vector obtained through electromagnetic (EM) 
simulation and the Jahn’s channel model (Jahn et al. 1996), which is an experiment-based 
channel model, the performance of the array processing technique in a realistic environment was 
investigated. 

The contents of this paper are as follows. In Section, the signal model is explained; and in 
Section 3, the array processing technique and the array calibration technique for the alleviation 
of the array uncertainty effect are explained. In Section 4, the simulation environment and the 
performance of the array processing technique are analyzed. Lastly, the conclusions of this study 
are summarized in Section 5. 
 
2. SIGNAL MODEL 
 
2.1 GNSS and Unwanted Signal Models 
 

In this Section, the received signal model for an array antenna receiver consisting of 𝑀𝑀 
antenna elements is explained. When each navigation satellite periodically transmits its direct 
sequence spread spectrum (DSSS) signal, the receiver receives the line-of-sight (LOS) signal of 
DSSS, 𝑁𝑁𝑚𝑚 multipath signals, and the signal where the interference signal and noise have been 
mixed. The signal received at the front-end of the receiver at time  𝑡𝑡 can be expressed by Eq. (1). 

 

𝐲𝐲(t) = ∑𝐡𝐡𝛼𝛼(𝑡𝑡) + 𝐠𝐠(𝑡𝑡) + 𝐮𝐮(𝑡𝑡).
𝑁𝑁𝑚𝑚

𝛼𝛼=0
 (1) � (1)

where α = 0  represents the LOS signal, and α > 0 represents 

the multipath signal. The α-th DSSS signal is expressed by 

Eq. (2).

 
where 𝛼𝛼 = 0 represents the LOS signal, and 𝛼𝛼 > 0 represents the multipath signal. The 𝛼𝛼-th 
DSSS signal is expressed by Eq. (2). 

 
𝐡𝐡𝛼𝛼(𝑡𝑡) = 𝐴𝐴𝛼𝛼(𝑡𝑡)𝑞𝑞(𝑡𝑡 − 𝜏𝜏𝛼𝛼(𝑡𝑡)) cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜙𝜙𝛼𝛼(𝑡𝑡)) 𝐚𝐚(𝚿𝚿𝛼𝛼(𝑡𝑡)) (2) 

 
where 𝜙𝜙𝛼𝛼(𝑡𝑡) = 2𝜋𝜋𝑓𝑓𝛼𝛼(𝑡𝑡)𝑡𝑡 + 𝜑𝜑𝛼𝛼(𝑡𝑡); and 𝐴𝐴𝛼𝛼(𝑡𝑡), 𝜏𝜏𝛼𝛼(𝑡𝑡), 𝑓𝑓𝛼𝛼(𝑡𝑡), 𝜑𝜑𝛼𝛼(𝑡𝑡), and 𝚿𝚿𝛼𝛼(𝑡𝑡) = [𝜃𝜃𝛼𝛼(𝑡𝑡), 𝜉𝜉𝛼𝛼(𝑡𝑡)]𝑇𝑇 
are the strength of the 𝛼𝛼-th DSSS signal, the time of arrival (TOA), the Doppler frequency, the 
phase, and the direction of arrival (DOA), respectively. In this regard, the direction of arrival 
consists of the elevation angle 𝜃𝜃𝛼𝛼(𝑡𝑡) and the azimuth angle 𝜉𝜉𝛼𝛼(𝑡𝑡). Also, 𝑞𝑞(𝑡𝑡) is the DSSS signal 
that consists of the navigation message and the inherent spreading code of the satellite (Closas et 
al. 2009, Lee et al. 2016). 𝑓𝑓𝑐𝑐 is the center frequency of the satellite navigation signal. 𝐚𝐚(𝚿𝚿𝛼𝛼(𝑡𝑡)) is 
the steering vector, which represents the phase difference between the antenna elements 
depending on the signal’s direction of arrival and the arrangement of the antenna elements. The 
steering vector is explained in the following section. In Eq. (1), 𝐠𝐠(𝑡𝑡) and 𝐮𝐮(𝑡𝑡) are the unknown 
interference signal and the white noise, excluding the multipath signals. 

After the down-conversion, the receiver collects a total of 𝐾𝐾 samples through the sampling 
period of 𝑇𝑇𝑠𝑠. In this regard, it is assumed that the wireless channel remains constant during the 
observation period (𝐾𝐾𝑇𝑇𝑠𝑠). The baseband received signal sample vector and the received signal 
sample matrix collected during the 𝑛𝑛 -th observation period are expressed as 
𝐲𝐲𝑛𝑛 = [𝐲𝐲1,𝑛𝑛𝑇𝑇 , 𝐲𝐲2,𝑛𝑛𝑇𝑇 ,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛𝑇𝑇 ]𝑇𝑇  and 𝐘𝐘𝑛𝑛 = [𝐲𝐲1,𝑛𝑛, 𝐲𝐲2,𝑛𝑛,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛], respectively. 𝐲𝐲𝑘𝑘,𝑛𝑛  is the 𝑘𝑘-th baseband 
received signal sample collected during the 𝑛𝑛-th observation period, and it can be expressed by 
Eq. (3). 

 

𝐲𝐲𝑘𝑘,𝑛𝑛 = ∑𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 + 𝐠𝐠𝑘𝑘,𝑛𝑛 + 𝐮𝐮𝑘𝑘,𝑛𝑛
𝑁𝑁𝑚𝑚

𝛼𝛼=0
. (3) 

 
where 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛, 𝐠𝐠𝑘𝑘,𝑛𝑛, and 𝐮𝐮𝑘𝑘,𝑛𝑛 represent the 𝐡𝐡𝛼𝛼(𝑡𝑡), 𝐠𝐠(𝑡𝑡), and 𝐮𝐮(𝑡𝑡) after the down-conversion and 
sampling at time  𝑡𝑡 = (𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠, respectively. 

 
𝐴𝐴𝛼𝛼,𝑛𝑛 ≜ 𝐴𝐴𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝜏𝜏𝛼𝛼,𝑛𝑛 ≜ 𝜏𝜏𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝚿𝚿𝛼𝛼,𝑛𝑛 ≜ 𝚿𝚿𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 
𝜙𝜙𝛼𝛼,𝑛𝑛 ≜ 𝜙𝜙𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝑞𝑞𝒌𝒌(𝜏𝜏𝛼𝛼,𝑛𝑛) ≜ 𝑞𝑞 ((𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠 − 𝜏𝜏𝛼𝛼,𝑛𝑛). 

(4) 

 
According to Eq. (4), 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 can be expressed by Eq. (5). 

 
𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛) = 𝜓𝜓𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛). (5) 

 
where 𝜓𝜓𝛼𝛼,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛  is the complex strength of the signal. 𝐠𝐠𝑘𝑘,𝑛𝑛  is differently defined 
depending on the type of the interference signal. In this study, a single-tone continuous wave 
(CW) interference signal was assumed. Thus, the interference signal 𝐠𝐠𝑘𝑘,𝑛𝑛 is expressed by Eq. (6) 
(Savasta et al. 2013). 
 

� (2)

where ϕα(t) = 2πfα(t)t + φα(t); and Aα(t), τα(t), fα(t), φα(t), and 

Ψα(t) = [θα(t), ξα(t)]T are the strength of the α-th DSSS signal, 

the time of arrival (TOA), the Doppler frequency, the phase, 

and the direction of arrival (DOA), respectively. In this 

regard, the direction of arrival consists of the elevation angle 

θα(t) and the azimuth angle ξα(t). Also, q(t) is the DSSS signal 

that consists of the navigation message and the inherent 

spreading code of the satellite (Closas et al. 2009, Lee et al. 

2016). fc is the center frequency of the satellite navigation 

signal. a(Ψα(t)) is the steering vector, which represents the 

phase difference between the antenna elements depending 

on the signal’s direction of arrival and the arrangement 

of the antenna elements. The steering vector is explained 

in the following section. In Eq. (1), g(t) and u(t) are the 

unknown interference signal and the white noise, excluding 

the multipath signals.

After the down-conversion, the receiver collects a total of 

K samples through the sampling period of Ts. In this regard, 

it is assumed that the wireless channel remains constant 

during the observation period (KTs). The baseband received 

signal sample vector and the received signal sample 

matrix collected during the n-th observation period are 

expressed as yn = [yT
1,n, yT

2,n, …, yT
K,n]T and Yn = [y1,n, y2,n, …, yK,n ],  

respectively. yk,n is the k-th baseband received signal sample 

collected during the n-th observation period, and it can be 

expressed by Eq. (3).
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DSSS signal is expressed by Eq. (2). 
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the steering vector, which represents the phase difference between the antenna elements 
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steering vector is explained in the following section. In Eq. (1), 𝐠𝐠(𝑡𝑡) and 𝐮𝐮(𝑡𝑡) are the unknown 
interference signal and the white noise, excluding the multipath signals. 

After the down-conversion, the receiver collects a total of 𝐾𝐾 samples through the sampling 
period of 𝑇𝑇𝑠𝑠. In this regard, it is assumed that the wireless channel remains constant during the 
observation period (𝐾𝐾𝑇𝑇𝑠𝑠). The baseband received signal sample vector and the received signal 
sample matrix collected during the 𝑛𝑛 -th observation period are expressed as 
𝐲𝐲𝑛𝑛 = [𝐲𝐲1,𝑛𝑛𝑇𝑇 , 𝐲𝐲2,𝑛𝑛𝑇𝑇 ,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛𝑇𝑇 ]𝑇𝑇  and 𝐘𝐘𝑛𝑛 = [𝐲𝐲1,𝑛𝑛, 𝐲𝐲2,𝑛𝑛,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛], respectively. 𝐲𝐲𝑘𝑘,𝑛𝑛  is the 𝑘𝑘-th baseband 
received signal sample collected during the 𝑛𝑛-th observation period, and it can be expressed by 
Eq. (3). 

 

𝐲𝐲𝑘𝑘,𝑛𝑛 = ∑𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 + 𝐠𝐠𝑘𝑘,𝑛𝑛 + 𝐮𝐮𝑘𝑘,𝑛𝑛
𝑁𝑁𝑚𝑚

𝛼𝛼=0
. (3) 

 
where 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛, 𝐠𝐠𝑘𝑘,𝑛𝑛, and 𝐮𝐮𝑘𝑘,𝑛𝑛 represent the 𝐡𝐡𝛼𝛼(𝑡𝑡), 𝐠𝐠(𝑡𝑡), and 𝐮𝐮(𝑡𝑡) after the down-conversion and 
sampling at time  𝑡𝑡 = (𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠, respectively. 

 
𝐴𝐴𝛼𝛼,𝑛𝑛 ≜ 𝐴𝐴𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝜏𝜏𝛼𝛼,𝑛𝑛 ≜ 𝜏𝜏𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝚿𝚿𝛼𝛼,𝑛𝑛 ≜ 𝚿𝚿𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 
𝜙𝜙𝛼𝛼,𝑛𝑛 ≜ 𝜙𝜙𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝑞𝑞𝒌𝒌(𝜏𝜏𝛼𝛼,𝑛𝑛) ≜ 𝑞𝑞 ((𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠 − 𝜏𝜏𝛼𝛼,𝑛𝑛). 

(4) 

 
According to Eq. (4), 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 can be expressed by Eq. (5). 

 
𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛) = 𝜓𝜓𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛). (5) 

 
where 𝜓𝜓𝛼𝛼,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛  is the complex strength of the signal. 𝐠𝐠𝑘𝑘,𝑛𝑛  is differently defined 
depending on the type of the interference signal. In this study, a single-tone continuous wave 
(CW) interference signal was assumed. Thus, the interference signal 𝐠𝐠𝑘𝑘,𝑛𝑛 is expressed by Eq. (6) 
(Savasta et al. 2013). 
 

� (3)

where hα,k,n, gk,n, and uk,n represent the hα(t), g(t), and u(t) after 

the down-conversion and sampling at time t = (n-1) KTs + kTs,  

respectively.

 
where 𝛼𝛼 = 0 represents the LOS signal, and 𝛼𝛼 > 0 represents the multipath signal. The 𝛼𝛼-th 
DSSS signal is expressed by Eq. (2). 

 
𝐡𝐡𝛼𝛼(𝑡𝑡) = 𝐴𝐴𝛼𝛼(𝑡𝑡)𝑞𝑞(𝑡𝑡 − 𝜏𝜏𝛼𝛼(𝑡𝑡)) cos(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜙𝜙𝛼𝛼(𝑡𝑡)) 𝐚𝐚(𝚿𝚿𝛼𝛼(𝑡𝑡)) (2) 

 
where 𝜙𝜙𝛼𝛼(𝑡𝑡) = 2𝜋𝜋𝑓𝑓𝛼𝛼(𝑡𝑡)𝑡𝑡 + 𝜑𝜑𝛼𝛼(𝑡𝑡); and 𝐴𝐴𝛼𝛼(𝑡𝑡), 𝜏𝜏𝛼𝛼(𝑡𝑡), 𝑓𝑓𝛼𝛼(𝑡𝑡), 𝜑𝜑𝛼𝛼(𝑡𝑡), and 𝚿𝚿𝛼𝛼(𝑡𝑡) = [𝜃𝜃𝛼𝛼(𝑡𝑡), 𝜉𝜉𝛼𝛼(𝑡𝑡)]𝑇𝑇 
are the strength of the 𝛼𝛼-th DSSS signal, the time of arrival (TOA), the Doppler frequency, the 
phase, and the direction of arrival (DOA), respectively. In this regard, the direction of arrival 
consists of the elevation angle 𝜃𝜃𝛼𝛼(𝑡𝑡) and the azimuth angle 𝜉𝜉𝛼𝛼(𝑡𝑡). Also, 𝑞𝑞(𝑡𝑡) is the DSSS signal 
that consists of the navigation message and the inherent spreading code of the satellite (Closas et 
al. 2009, Lee et al. 2016). 𝑓𝑓𝑐𝑐 is the center frequency of the satellite navigation signal. 𝐚𝐚(𝚿𝚿𝛼𝛼(𝑡𝑡)) is 
the steering vector, which represents the phase difference between the antenna elements 
depending on the signal’s direction of arrival and the arrangement of the antenna elements. The 
steering vector is explained in the following section. In Eq. (1), 𝐠𝐠(𝑡𝑡) and 𝐮𝐮(𝑡𝑡) are the unknown 
interference signal and the white noise, excluding the multipath signals. 

After the down-conversion, the receiver collects a total of 𝐾𝐾 samples through the sampling 
period of 𝑇𝑇𝑠𝑠. In this regard, it is assumed that the wireless channel remains constant during the 
observation period (𝐾𝐾𝑇𝑇𝑠𝑠). The baseband received signal sample vector and the received signal 
sample matrix collected during the 𝑛𝑛 -th observation period are expressed as 
𝐲𝐲𝑛𝑛 = [𝐲𝐲1,𝑛𝑛𝑇𝑇 , 𝐲𝐲2,𝑛𝑛𝑇𝑇 ,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛𝑇𝑇 ]𝑇𝑇  and 𝐘𝐘𝑛𝑛 = [𝐲𝐲1,𝑛𝑛, 𝐲𝐲2,𝑛𝑛,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛], respectively. 𝐲𝐲𝑘𝑘,𝑛𝑛  is the 𝑘𝑘-th baseband 
received signal sample collected during the 𝑛𝑛-th observation period, and it can be expressed by 
Eq. (3). 

 

𝐲𝐲𝑘𝑘,𝑛𝑛 = ∑𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 + 𝐠𝐠𝑘𝑘,𝑛𝑛 + 𝐮𝐮𝑘𝑘,𝑛𝑛
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𝛼𝛼=0
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where 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛, 𝐠𝐠𝑘𝑘,𝑛𝑛, and 𝐮𝐮𝑘𝑘,𝑛𝑛 represent the 𝐡𝐡𝛼𝛼(𝑡𝑡), 𝐠𝐠(𝑡𝑡), and 𝐮𝐮(𝑡𝑡) after the down-conversion and 
sampling at time  𝑡𝑡 = (𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠, respectively. 

 
𝐴𝐴𝛼𝛼,𝑛𝑛 ≜ 𝐴𝐴𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝜏𝜏𝛼𝛼,𝑛𝑛 ≜ 𝜏𝜏𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝚿𝚿𝛼𝛼,𝑛𝑛 ≜ 𝚿𝚿𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 
𝜙𝜙𝛼𝛼,𝑛𝑛 ≜ 𝜙𝜙𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝑞𝑞𝒌𝒌(𝜏𝜏𝛼𝛼,𝑛𝑛) ≜ 𝑞𝑞 ((𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠 − 𝜏𝜏𝛼𝛼,𝑛𝑛). 

(4) 

 
According to Eq. (4), 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 can be expressed by Eq. (5). 
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where 𝜓𝜓𝛼𝛼,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛  is the complex strength of the signal. 𝐠𝐠𝑘𝑘,𝑛𝑛  is differently defined 
depending on the type of the interference signal. In this study, a single-tone continuous wave 
(CW) interference signal was assumed. Thus, the interference signal 𝐠𝐠𝑘𝑘,𝑛𝑛 is expressed by Eq. (6) 
(Savasta et al. 2013). 
 

 
where 𝛼𝛼 = 0 represents the LOS signal, and 𝛼𝛼 > 0 represents the multipath signal. The 𝛼𝛼-th 
DSSS signal is expressed by Eq. (2). 
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are the strength of the 𝛼𝛼-th DSSS signal, the time of arrival (TOA), the Doppler frequency, the 
phase, and the direction of arrival (DOA), respectively. In this regard, the direction of arrival 
consists of the elevation angle 𝜃𝜃𝛼𝛼(𝑡𝑡) and the azimuth angle 𝜉𝜉𝛼𝛼(𝑡𝑡). Also, 𝑞𝑞(𝑡𝑡) is the DSSS signal 
that consists of the navigation message and the inherent spreading code of the satellite (Closas et 
al. 2009, Lee et al. 2016). 𝑓𝑓𝑐𝑐 is the center frequency of the satellite navigation signal. 𝐚𝐚(𝚿𝚿𝛼𝛼(𝑡𝑡)) is 
the steering vector, which represents the phase difference between the antenna elements 
depending on the signal’s direction of arrival and the arrangement of the antenna elements. The 
steering vector is explained in the following section. In Eq. (1), 𝐠𝐠(𝑡𝑡) and 𝐮𝐮(𝑡𝑡) are the unknown 
interference signal and the white noise, excluding the multipath signals. 

After the down-conversion, the receiver collects a total of 𝐾𝐾 samples through the sampling 
period of 𝑇𝑇𝑠𝑠. In this regard, it is assumed that the wireless channel remains constant during the 
observation period (𝐾𝐾𝑇𝑇𝑠𝑠). The baseband received signal sample vector and the received signal 
sample matrix collected during the 𝑛𝑛 -th observation period are expressed as 
𝐲𝐲𝑛𝑛 = [𝐲𝐲1,𝑛𝑛𝑇𝑇 , 𝐲𝐲2,𝑛𝑛𝑇𝑇 ,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛𝑇𝑇 ]𝑇𝑇  and 𝐘𝐘𝑛𝑛 = [𝐲𝐲1,𝑛𝑛, 𝐲𝐲2,𝑛𝑛,⋯ , 𝐲𝐲𝐾𝐾,𝑛𝑛], respectively. 𝐲𝐲𝑘𝑘,𝑛𝑛  is the 𝑘𝑘-th baseband 
received signal sample collected during the 𝑛𝑛-th observation period, and it can be expressed by 
Eq. (3). 

 

𝐲𝐲𝑘𝑘,𝑛𝑛 = ∑𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 + 𝐠𝐠𝑘𝑘,𝑛𝑛 + 𝐮𝐮𝑘𝑘,𝑛𝑛
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where 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛, 𝐠𝐠𝑘𝑘,𝑛𝑛, and 𝐮𝐮𝑘𝑘,𝑛𝑛 represent the 𝐡𝐡𝛼𝛼(𝑡𝑡), 𝐠𝐠(𝑡𝑡), and 𝐮𝐮(𝑡𝑡) after the down-conversion and 
sampling at time  𝑡𝑡 = (𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠, respectively. 

 
𝐴𝐴𝛼𝛼,𝑛𝑛 ≜ 𝐴𝐴𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝜏𝜏𝛼𝛼,𝑛𝑛 ≜ 𝜏𝜏𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝚿𝚿𝛼𝛼,𝑛𝑛 ≜ 𝚿𝚿𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 
𝜙𝜙𝛼𝛼,𝑛𝑛 ≜ 𝜙𝜙𝛼𝛼(𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠), 𝑞𝑞𝒌𝒌(𝜏𝜏𝛼𝛼,𝑛𝑛) ≜ 𝑞𝑞 ((𝑛𝑛 − 1)𝐾𝐾𝑇𝑇𝑠𝑠 + 𝑘𝑘𝑇𝑇𝑠𝑠 − 𝜏𝜏𝛼𝛼,𝑛𝑛). 

(4) 

 
According to Eq. (4), 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 can be expressed by Eq. (5). 

 
𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛) = 𝜓𝜓𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛). (5) 

 
where 𝜓𝜓𝛼𝛼,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛  is the complex strength of the signal. 𝐠𝐠𝑘𝑘,𝑛𝑛  is differently defined 
depending on the type of the interference signal. In this study, a single-tone continuous wave 
(CW) interference signal was assumed. Thus, the interference signal 𝐠𝐠𝑘𝑘,𝑛𝑛 is expressed by Eq. (6) 
(Savasta et al. 2013). 
 

�
(4)

According to Eq. (4), hα,k,n can be expressed by Eq. (5).

 
where 𝛼𝛼 = 0 represents the LOS signal, and 𝛼𝛼 > 0 represents the multipath signal. The 𝛼𝛼-th 
DSSS signal is expressed by Eq. (2). 
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interference signal and the white noise, excluding the multipath signals. 

After the down-conversion, the receiver collects a total of 𝐾𝐾 samples through the sampling 
period of 𝑇𝑇𝑠𝑠. In this regard, it is assumed that the wireless channel remains constant during the 
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received signal sample collected during the 𝑛𝑛-th observation period, and it can be expressed by 
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(4) 

 
According to Eq. (4), 𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 can be expressed by Eq. (5). 

 
𝐡𝐡𝛼𝛼,𝑘𝑘,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛) = 𝜓𝜓𝛼𝛼,𝑛𝑛𝑞𝑞𝑘𝑘(𝜏𝜏𝛼𝛼,𝑛𝑛)𝐚𝐚(𝚿𝚿𝛼𝛼,𝑛𝑛). (5) 

 
where 𝜓𝜓𝛼𝛼,𝑛𝑛 = 𝐴𝐴𝛼𝛼,𝑛𝑛𝑒𝑒𝑗𝑗𝜙𝜙𝛼𝛼,𝑛𝑛  is the complex strength of the signal. 𝐠𝐠𝑘𝑘,𝑛𝑛  is differently defined 
depending on the type of the interference signal. In this study, a single-tone continuous wave 
(CW) interference signal was assumed. Thus, the interference signal 𝐠𝐠𝑘𝑘,𝑛𝑛 is expressed by Eq. (6) 
(Savasta et al. 2013). 
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where ψα,n = Aα,n ejϕα,n is the complex strength of the signal. 

gk,n is differently defined depending on the type of the 

interference signal. In this study, a single-tone continuous 

wave (CW) interference signal was assumed. Thus, the 

interference signal gk,n is expressed by Eq. (6) (Savasta et al. 

2013).

	 𝐠𝐠𝑘𝑘,𝑛𝑛 = ∑ 𝐴𝐴𝛽𝛽,𝑛𝑛𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝛽𝛽,𝑛𝑛((𝑛𝑛−1)𝐾𝐾𝑇𝑇𝑠𝑠+𝑘𝑘𝑇𝑇𝑠𝑠)
𝑁𝑁𝑖𝑖

𝛽𝛽=1
𝐚𝐚(𝚿𝚿𝛽𝛽,𝑛𝑛). (6) 

 
where 𝑁𝑁𝑖𝑖 is the total number of interference signals; and 𝐴𝐴𝛽𝛽,𝑛𝑛, 𝑓𝑓𝛽𝛽,𝑛𝑛, and 𝚿𝚿𝛽𝛽,𝑛𝑛 are the complex 
strength, frequency offset, and direction of arrival for the 𝛽𝛽-th interference signal, respectively. It 
is assumed that the receiver has no information on the interference signal. 
 
2.2 Steering Vector Model 

 
A steering vector refers to the phase difference of an incident signal that is induced by the 

spatial difference between the antenna elements. For an ideal array antenna where every antenna 
element has the same omnidirectional beam pattern and there are no uncertainties, the theoretical 
steering vector for a signal can be defined as the function of the antenna element arrangement 
and the signal’s direction of arrival (Lee & Cheng 2012). For a three-dimensional array antenna 
consisting of a total of 𝑀𝑀 antenna elements, the theoretical steering vector depending on the 
incident signal’s direction of arrival 𝚿𝚿 = [𝜃𝜃, 𝜉𝜉]𝑇𝑇 is expressed by Eq. (7). 

 

𝐚̅𝐚(𝚿𝚿) =

[
 
 
 𝑒𝑒𝑗𝑗𝐩𝐩1𝑇𝑇𝐤𝐤(𝚿𝚿)

𝑒𝑒𝑗𝑗𝐩𝐩2𝑇𝑇𝐤𝐤(𝚿𝚿)

⋮
𝑒𝑒𝑗𝑗𝐩𝐩𝑀𝑀

𝑇𝑇 𝐤𝐤(𝚿𝚿)]
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where 𝜃𝜃 and 𝜉𝜉 are the elevation angle and azimuth angle of the incident signal, respectively. Also, 
𝑗𝑗 = √−1 , 𝐩𝐩𝑚𝑚 = [𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚]𝑇𝑇  represents the position vector of the 𝑚𝑚 -th antenna element. 
𝐤𝐤(𝚿𝚿) ≜ 𝐤𝐤(𝜃𝜃, 𝜉𝜉) is the propagation vector of the incident signal depending on the direction of 
arrival, and it is defined by Eq. (8). Fig. 1 shows the example of a three-dimensional array 
antenna consisting of five elements, and the variables for defining the steering vector are 
explained. 
 

𝐤𝐤(𝚿𝚿) = 𝐤𝐤(𝜃𝜃, 𝜉𝜉) = −2𝜋𝜋
𝜆𝜆 [

sin 𝜃𝜃 cos 𝜉𝜉
sin 𝜃𝜃 sin 𝜉𝜉

cos 𝜃𝜃
]. (8) 

 
However, for an actual array antenna, the steering vector is defined by Eq. (9) due to the 

uncertainties such as the position error of the antenna element, anisotropic beam pattern, and 
mutual coupling (Su & Ling 2001, Aksoy & Tuncer 2013). 

 
𝐚𝐚(𝚿𝚿) = 𝐂𝐂(𝚿𝚿)𝐚̅𝐚(𝚿𝚿). (9) 

 
where 𝐂𝐂(𝚿𝚿) is the unknown state-transition matrix due to array uncertainties, and it is also called 
an uncertainty matrix. In an environment without array uncertainties, 𝐂𝐂(𝚿𝚿) = 𝐈𝐈𝑀𝑀. The change in 
the beam pattern of the antenna element depending on the angle is continuous, and the rate of 
change is small. Accordingly, it can be assumed that the uncertainty matrix is identical within a 
certain angle range (Aksoy & Tuncer 2013). Thus, when a total of 𝐷𝐷 = 𝐷𝐷𝐸𝐸 × 𝐷𝐷𝐴𝐴  sectors are 

� (6)

where Ni is the total number of interference signals; and Aβ,n, 

fβ,n, and Ψβ,n are the complex strength, frequency offset, and 

DOA for the β-th interference signal, respectively. It is assumed 

that the receiver has no information on the interference signal.

2.2 Steering Vector Model

A steering vector refers to the phase difference of an 

incident signal that is induced by the spatial difference 

between the antenna elements. For an ideal array antenna 

where every antenna element has the same omnidirectional 

beam pattern and there are no uncertainties, the theoretical 

steering vector for a signal can be defined as the function of 

the antenna element arrangement and the signal’s direction 

of arrival (Lee & Cheng 2012). For a three-dimensional 

array antenna consisting of a total of M antenna elements, 

the theoretical steering vector depending on the incident 

signal’s DOA Ψ = [θ, ξ]T is expressed by Eq. (7).
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is assumed that the receiver has no information on the interference signal. 
 
2.2 Steering Vector Model 

 
A steering vector refers to the phase difference of an incident signal that is induced by the 
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where 𝜃𝜃 and 𝜉𝜉 are the elevation angle and azimuth angle of the incident signal, respectively. Also, 
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𝐤𝐤(𝚿𝚿) ≜ 𝐤𝐤(𝜃𝜃, 𝜉𝜉) is the propagation vector of the incident signal depending on the direction of 
arrival, and it is defined by Eq. (8). Fig. 1 shows the example of a three-dimensional array 
antenna consisting of five elements, and the variables for defining the steering vector are 
explained. 
 

𝐤𝐤(𝚿𝚿) = 𝐤𝐤(𝜃𝜃, 𝜉𝜉) = −2𝜋𝜋
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However, for an actual array antenna, the steering vector is defined by Eq. (9) due to the 

uncertainties such as the position error of the antenna element, anisotropic beam pattern, and 
mutual coupling (Su & Ling 2001, Aksoy & Tuncer 2013). 
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where 𝐂𝐂(𝚿𝚿) is the unknown state-transition matrix due to array uncertainties, and it is also called 
an uncertainty matrix. In an environment without array uncertainties, 𝐂𝐂(𝚿𝚿) = 𝐈𝐈𝑀𝑀. The change in 
the beam pattern of the antenna element depending on the angle is continuous, and the rate of 
change is small. Accordingly, it can be assumed that the uncertainty matrix is identical within a 
certain angle range (Aksoy & Tuncer 2013). Thus, when a total of 𝐷𝐷 = 𝐷𝐷𝐸𝐸 × 𝐷𝐷𝐴𝐴  sectors are 
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where θ and ξ are the elevation angle and azimuth angle of the 

incident signal, respectively. Also, j = √
_
(-1), pm = [xm, ym, zm]T 

represents the position vector of the m-th antenna element. 

k(Ψ) ≜ k(θ, ξ) is the propagation vector of the incident signal 

depending on the DOA, and it is defined by Eq. (8). Fig. 1 

shows the example of a three-dimensional array antenna 

consisting of five elements, and the variables for defining 

the steering vector are explained.
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strength, frequency offset, and direction of arrival for the 𝛽𝛽-th interference signal, respectively. It 
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A steering vector refers to the phase difference of an incident signal that is induced by the 

spatial difference between the antenna elements. For an ideal array antenna where every antenna 
element has the same omnidirectional beam pattern and there are no uncertainties, the theoretical 
steering vector for a signal can be defined as the function of the antenna element arrangement 
and the signal’s direction of arrival (Lee & Cheng 2012). For a three-dimensional array antenna 
consisting of a total of 𝑀𝑀 antenna elements, the theoretical steering vector depending on the 
incident signal’s direction of arrival 𝚿𝚿 = [𝜃𝜃, 𝜉𝜉]𝑇𝑇 is expressed by Eq. (7). 
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where 𝜃𝜃 and 𝜉𝜉 are the elevation angle and azimuth angle of the incident signal, respectively. Also, 
𝑗𝑗 = √−1 , 𝐩𝐩𝑚𝑚 = [𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚, 𝑧𝑧𝑚𝑚]𝑇𝑇  represents the position vector of the 𝑚𝑚 -th antenna element. 
𝐤𝐤(𝚿𝚿) ≜ 𝐤𝐤(𝜃𝜃, 𝜉𝜉) is the propagation vector of the incident signal depending on the direction of 
arrival, and it is defined by Eq. (8). Fig. 1 shows the example of a three-dimensional array 
antenna consisting of five elements, and the variables for defining the steering vector are 
explained. 
 

𝐤𝐤(𝚿𝚿) = 𝐤𝐤(𝜃𝜃, 𝜉𝜉) = −2𝜋𝜋
𝜆𝜆 [

sin 𝜃𝜃 cos 𝜉𝜉
sin 𝜃𝜃 sin 𝜉𝜉

cos 𝜃𝜃
]. (8) 

 
However, for an actual array antenna, the steering vector is defined by Eq. (9) due to the 

uncertainties such as the position error of the antenna element, anisotropic beam pattern, and 
mutual coupling (Su & Ling 2001, Aksoy & Tuncer 2013). 
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where 𝐂𝐂(𝚿𝚿) is the unknown state-transition matrix due to array uncertainties, and it is also called 
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the beam pattern of the antenna element depending on the angle is continuous, and the rate of 
change is small. Accordingly, it can be assumed that the uncertainty matrix is identical within a 
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However, for an actual array antenna, the steering vector 

is defined by Eq. (9) due to the uncertainties such as the 

position error of the antenna element, anisotropic beam 

pattern, and mutual coupling (Su & Ling 2001, Aksoy & 

Tuncer 2013).
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where C(Ψ) is the unknown state-transition matrix due 

to array uncertainties, and it is also called an uncertainty 

matrix. In an environment without array uncertainties, 

C(Ψ) = IM. The change in the beam pattern of the antenna 

element depending on the angle is continuous, and the rate 

of change is small. Accordingly, it can be assumed that the 

uncertainty matrix is identical within a certain angle range 

(Aksoy & Tuncer 2013). Thus, when a total of D = DE × DA  

sectors are divided depending on the beam pattern of the 

antenna element, and the angle range of the d-th sector is 

defined as θ ∈ [θd,min, θd,max] and ξ ∈ [ξd,min, ξd,max], the uncertainty 

matrix for the d-th sector can be expressed by Eq. (10).
divided depending on the beam pattern of the antenna element, and the angle range of the 𝑑𝑑-th 
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where DE and DA are the numbers of sectors for the elevation 

angle and the azimuth angle, respectively.

3. ARRAY PROCESSING TECHNIQUES 
UNDER UNCERTAINTIES

3.1 Array-Based DOA Estimation

The MUltiple Signal Classification (MUSIC) algorithm 

(Schmidt 1986) is the most representative technique 

for estimating the incident signal’s DOA using an array 

antenna. In the MUSIC algorithm, a space spectrum is 

obtained based on the fact that the signal subspace and 

the noise subspace are orthogonal to each other, and the 

signal’s DOA is estimated through the peak detection of the 

spectrum. The signal and noise subspaces can be obtained 

through the eigen decomposition of the covariance matrix 

of the received signal.

Fig. 1.  Example of a 5-element 3-dimensional array antenna.
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Based on the orthogonality of the incident signal and the 

noise, the covariance matrix of the received signal can be 

defined by Eq. (11).
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where Rs,n and σn
2IM are the covariance matrix of the incident 

signal vector and the noise vector; and IM is the identity 

matrix with a size of M × M. In this regard, the matrix An = 

[a(Ψ1,n), a(Ψ2,n), …, a(ΨP,n)] consists of the steering vectors of 

P incident signals (P ≤ M), and Ψp,n is the p-th signal’s DOA. 

Through the eigenvalue decomposition of Ry,n, the signal 

and noise subspaces (Es,n and Eu,n) can be obtained. Es,n = [e1,n, 

e2,n, ⋯, eP,n] consists of the eigenvectors that correspond to 

the P largest eigenvalues among the M eigenvalues of Ry,n; 

Eu,n = [eP+1,n, eP+2,n, …, eM,n] consists of the remaining (M-P) 

eigenvectors. From the noise subspace, the power spectrum 

of the signal depending on the DOA Ψ can be calculated 

using the MUSIC algorithm, as shown in Eq. (12).
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Using Eq. (12), the power spectrum is calculated for the θ ∈ 
[0, π/2] and ξ ∈ [0, 2π] range; and among them, the P largest 

peak values are estimated to be the incident signal’s DOA. 

In an actual environment, Ry,n is substituted with the sample 

covariance of the received signal as in Eq. (13).
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3.2 Array-Based Beamformer

An array antenna receiver can form a beam in the wanted 

direction by allocating different phases and strengths to 

each antenna element, and this beam forming technique 

is called beamforming. The purpose of beamforming is to 

amplify the signal-to-interference-plus-noise-ratio (SINR) 

(i.e., to increase the reception rate of the wanted signal) by 

eliminating or reducing the remaining signal components 

by adjusting the beam in the direction of the wanted 

signal. To increase the position determination accuracy of 

a satellite navigation system receiver, a beam needs to be 

formed in the direction of the LOS signal (Seco-Granados et 

el. 2005, Lee et al. 2016).

In the present study, the Capon beamformer (Capon 

1969), which is the most representative method, was 

considered. When the covariance matrix of the multipath/

other interference signals and the noise is Rg+u,n as in Eq. (3), 

the problem of Capon beamformer design can be defined 

as the problem of maximizing the output SINR of the 

beamformer, as shown in Eq. (14).
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In the present study, the Capon beamformer (Capon 1969), which is the most representative 
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maximize SINR =
|𝜓𝜓0,𝑛𝑛|2|𝐰𝐰𝐻𝐻𝐚𝐚(𝚿𝚿0,𝑛𝑛)|2

𝐰𝐰𝐻𝐻𝐑𝐑𝐠𝐠+𝐮𝐮,𝑛𝑛𝐰𝐰 . (14) 

 
The optimization problem in Eq. (14) can then be interpreted as the problem of minimizing the 
power of the noise and other interference signals while the strength of the beamformer output in 
the direction of the direction of arrival 𝚿𝚿0,𝑛𝑛 is fixed as a constant, as shown in Eq. (15). 

 
 minimize 𝐰𝐰𝐻𝐻𝐑𝐑𝐠𝐠+𝐮𝐮,𝑛𝑛𝐰𝐰                 
subject to 𝐰𝐰𝐻𝐻𝐚𝐚(𝚿𝚿0,𝑛𝑛) = 1. (15) 

 
For the above optimization problem, the optimal solution can be obtained through the 
Lagrangian method (Chong & Zak 2013). Accordingly, the Capon beamforming vector is 
derived as shown in Eq. (16). 

 

𝐰𝐰𝑀𝑀𝑀𝑀 =
𝐑𝐑𝐠𝐠+𝐮𝐮,𝑛𝑛

−1 𝐚𝐚(𝚿𝚿0,𝑛𝑛)
𝐚𝐚𝐻𝐻(𝚿𝚿0,𝑛𝑛)𝐑𝐑𝐠𝐠+𝐮𝐮,𝑛𝑛

−1 𝐚𝐚(𝚿𝚿0,𝑛𝑛). (16) 

 
The Capon beamformer is the problem of mathematically minimizing the covariance matrix, and 
it is also called a minimum variance beamformer. The Capon beamformer has low complexity 
and a simple implementation method. However, in an actual environment, the covariance matrix 
of the noise and the interference signal cannot be calculated. In general, when the number of 
samples for the received signal is sufficiently larger than the number of antenna elements, the 
covariance matrix of the noise and the interference signal can be substituted with the sample 
covariance of the received signal (Li et al. 2003). A GNSS receiver basically performs signal 
processing by acquiring more than 1,023 samples, and thus, beamforming can be performed 
using the sample covariance of the received signal as in Eq. (13), as described above. 

 
3.3 Model Mismatch (Array Uncertainties) Effects on Array Processing 
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The optimization problem in Eq. (14) can then be 

interpreted as the problem of minimizing the power of the 

noise and other interference signals while the strength of 

the beamformer output in the direction Ψ0,n is fixed as a 

constant, as shown in Eq. (15).
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For the above optimization problem, the optimal solution 

can be obtained through the Lagrangian method (Chong & 

Zak 2013). Accordingly, the Capon beamforming vector is 

derived as shown in Eq. (16).
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The Capon beamformer is the problem of mathematically 

minimizing the covariance matrix, and it is also called a 

minimum variance beamformer. The Capon beamformer 

has low complexity and a simple implementation method. 

However, in an actual environment, the covariance matrix of 

the noise and the interference signal cannot be calculated. In 

general, when the number of samples for the received signal 

is sufficiently larger than the number of antenna elements, 

the covariance matrix of the noise and the interference signal 

can be substituted with the sample covariance of the received 

signal (Li et al. 2003). A GNSS receiver basically performs 

signal processing by acquiring more than 1,023 samples, 

and thus, beamforming can be performed using the sample 

covariance of the received signal as in Eq. (13), as described 

above.

3.3 Model Mismatch (Array Uncertainties) Effects on Array 

Processing

As explained earlier, the MUSIC algorithm estimates the 

incident signal’s DOA based on the orthogonality between 

the signal and noise subspaces. In other words, |An
H Eu,n| = 

|[a(Ψ1,n), …, a(ΨP,n)]H Eu,n| ≅ 0 is satisfied. However, when 

the uncertainty matrix for the receiver is assumed as C(Ψp,n) 

= IM, a(Ψp,n) = a̅(Ψp,n) (i.e., the array uncertainties cannot 

be recognized), model mismatch occurs, and the above 

equality condition is no longer satisfied. By defining that 

a̅(Ψp,n) = a(Ψp,n) + bp,n, the fact that |An
H Eu,n| ≅ 0 is not valid, on 
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the assumption of C(Ψp,n) = IM, can be seen in Eq. (17).

As explained earlier, the MUSIC algorithm estimates the incident signal’s direction of 
arrival based on the orthogonality between the signal and noise subspaces. In other words, 
|𝐀𝐀𝑛𝑛

𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| = |[𝐚𝐚(𝚿𝚿1,𝑛𝑛), ⋯ , 𝐚𝐚(𝚿𝚿𝑷𝑷,𝑛𝑛)]𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| ≅ 0  is satisfied. However, when the uncertainty 
matrix for the receiver is assumed as 𝐂𝐂(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐈𝐈𝑀𝑀 , 𝐚𝐚(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐚̅𝐚(𝚿𝚿𝑝𝑝,𝑛𝑛)  (i.e., the array 
uncertainties cannot be recognized), model mismatch occurs, and the above equality condition is 
no longer satisfied. By defining that 𝐚̅𝐚(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐚𝐚(𝚿𝚿𝑝𝑝,𝑛𝑛) + 𝐛𝐛𝑝𝑝,𝑛𝑛, the fact that |𝐀𝐀𝑛𝑛

𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| ≅ 0 is not 
valid, on the assumption of 𝐂𝐂(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐈𝐈𝑀𝑀, can be seen in Eq. (17). 

 
|[𝐚𝐚(𝚿𝚿1,𝑛𝑛) + 𝐛𝐛1,𝑛𝑛, ⋯ , 𝐚𝐚(𝚿𝚿𝑷𝑷,𝑛𝑛) + 𝐛𝐛𝑃𝑃,𝑛𝑛]𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| = |[𝐛𝐛1,𝑛𝑛, ⋯ , 𝐛𝐛𝑃𝑃,𝑛𝑛]𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| ≠ 0 (17) 

 
where 𝐛𝐛𝑝𝑝,𝑛𝑛 is the bias error vector of the steering vector for the 𝑝𝑝-th signal. Thus, when the 
direction of arrival is estimated using a steering vector that is different from the actual steering 
vector, the estimation of the direction of arrival includes an error. Similarly, for the beamformer, 
the model mismatch of the steering vector forms a beam in a direction that is different from the 
look direction, and also deteriorates the beamformer output SINR. Therefore, to prevent the 
performance deterioration of the array processing technique in a system with array uncertainties, 
the estimation of the actual steering vector should be enabled by accurately estimating the array 
uncertainty matrix. 

 
3.4 Array Calibration 

 
Array calibration is a technique that alleviates the model mismatch effect of the steering 

vector by estimating the uncertainty matrix or the actual steering vector. Depending on the 
reference data acquisition method of the array antenna, it is classified into pilot calibration, self-
calibration, adaptive calibration, and active calibration. Detailed explanations on each technique 
can be found in Willerton 2013. As the present study focuses on the performance analysis of 
array processing depending on array uncertainties and calibration, only the pilot calibration, 
which is the most representative calibration technique, was considered. In the pilot calibration, 
based on the relationship between the theoretical steering vector and the actual steering vector 
(refer to Eqs. (9) and (10)), the problem of uncertainty vector estimation for each sector is 
defined as shown in Eq. (18). 

 
minimize

𝐂𝐂𝑑𝑑
    ‖𝐀𝐀𝑑𝑑 − 𝐂𝐂𝑑𝑑𝐀̅𝐀𝑑𝑑‖2

subject to    𝚿𝚿 = [𝜃𝜃, 𝜉𝜉]𝑇𝑇, 𝜃𝜃 ∈ [𝜃𝜃𝑑𝑑,min, 𝜃𝜃𝑑𝑑,max], 𝜉𝜉 ∈ [𝜉𝜉𝑑𝑑,min, 𝜉𝜉𝑑𝑑,max] 
(18) 

 
where 𝐀𝐀𝑑𝑑 = [𝐚𝐚(𝚿𝚿𝑑𝑑,min), ⋯ , 𝐚𝐚(𝚿𝚿𝑑𝑑,max)] is a set of steering vectors acquired through a far field 
pilot source-based experiment or EM simulation, and 𝐀̅𝐀𝑑𝑑 = [𝐚̅𝐚(𝚿𝚿𝑑𝑑,min), ⋯ , 𝐚̅𝐚(𝚿𝚿𝑑𝑑,max)] is a set 
of theoretical steering vectors corresponding to 𝐀𝐀𝑑𝑑 . Also, 𝚿𝚿𝑑𝑑,min = [𝜃𝜃𝑑𝑑,min, 𝜉𝜉𝑑𝑑,min]𝑇𝑇

 and 
𝚿𝚿𝑑𝑑,max = [𝜃𝜃𝑑𝑑,max, 𝜉𝜉𝑑𝑑,max]𝑇𝑇

. 
From Eq. (18), the uncertainty matrix can be estimated as shown in Eq. (19) based on the 

least squares estimation (Su & Ling 2001). 
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where bp,n is the bias error vector of the steering vector 

for the p-th signal. Thus, when the DOA is estimated 

using a steering vector that is different from the actual 

steering vector, the estimation of the DOA includes an 

error. Similarly, for the beamformer, the model mismatch 

of the steering vector forms a beam in a direction that is 

different from the look direction, and also deteriorates 

the beamformer output SINR. Therefore, to prevent the 

performance deterioration of the array processing technique 

in a system with array uncertainties, the estimation of the 

actual steering vector should be enabled by accurately 

estimating the array uncertainty matrix.

3.4 Array Calibration

Array calibration is a technique that alleviates the model 

mismatch effect of the steering vector by estimating the 

uncertainty matrix or the actual steering vector. Depending 

on the reference data acquisition method of the array 

antenna, it is classified into pilot calibration, self-calibration, 

adaptive calibration, and active calibration. Detailed 

explanations on each technique can be found in Willerton 

2013. As the present study focuses on the performance 

analysis of array processing depending on array uncertainties 

and calibration, only the pilot calibration, which is the most 

representative calibration technique, was considered. In 

the pilot calibration, based on the relationship between the 

theoretical steering vector and the actual steering vector 

(refer to Eqs. (9) and (10)), the problem of uncertainty vector 

estimation for each sector is defined as shown in Eq. (18).

As explained earlier, the MUSIC algorithm estimates the incident signal’s direction of 
arrival based on the orthogonality between the signal and noise subspaces. In other words, 
|𝐀𝐀𝑛𝑛

𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| = |[𝐚𝐚(𝚿𝚿1,𝑛𝑛), ⋯ , 𝐚𝐚(𝚿𝚿𝑷𝑷,𝑛𝑛)]𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| ≅ 0  is satisfied. However, when the uncertainty 
matrix for the receiver is assumed as 𝐂𝐂(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐈𝐈𝑀𝑀 , 𝐚𝐚(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐚̅𝐚(𝚿𝚿𝑝𝑝,𝑛𝑛)  (i.e., the array 
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𝐻𝐻𝐄𝐄𝐮𝐮,𝑛𝑛| ≅ 0 is not 
valid, on the assumption of 𝐂𝐂(𝚿𝚿𝑝𝑝,𝑛𝑛) = 𝐈𝐈𝑀𝑀, can be seen in Eq. (17). 
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From Eq. (18), the uncertainty matrix can be estimated as shown in Eq. (19) based on the 

least squares estimation (Su & Ling 2001). 
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where Ad = [a(Ψd,min), …, a(Ψd,max)] is a set of steering vectors 

acquired through a far field pilot source-based experiment 

or EM simulation, and A̅d = [a̅(Ψd,min), …, a̅(Ψd,max)] is a set of 

theoretical steering vectors corresponding to Ad. Also, Ψd,min = 

[θd,min, ξd,min]T and Ψd,max = [θd,max, ξd,max]
T.

From Eq. (18), the uncertainty matrix can be estimated as 

shown in Eq. (19) based on the least squares estimation (Su 

& Ling 2001).

𝐂̂𝐂𝑑𝑑 = 𝐂̂𝐂(𝚿𝚿) = 𝐀𝐀𝑑𝑑𝐀̅𝐀𝑑𝑑
𝐻𝐻[𝐀̅𝐀𝑑𝑑𝐀̅𝐀 𝑑𝑑

𝐻𝐻 ]−1 
where 𝚿𝚿 = [𝜃𝜃, 𝜉𝜉]𝑇𝑇, 𝜃𝜃 ∈ [𝜃𝜃𝑑𝑑,min, 𝜃𝜃𝑑𝑑,max], 𝜉𝜉 ∈ [𝜉𝜉𝑑𝑑,min, 𝜉𝜉𝑑𝑑,max]

(19)

Based on this, the actual steering vector for each sector can be estimated.

𝐚̂𝐚(𝚿𝚿) = 𝐂̂𝐂(𝚿𝚿)𝐚̅𝐚(𝚿𝚿) 
where 𝚿𝚿 = [𝜃𝜃, 𝜉𝜉]𝑇𝑇, 𝜃𝜃 ∈ [𝜃𝜃𝑑𝑑,min, 𝜃𝜃𝑑𝑑,max], 𝜉𝜉 ∈ [𝜉𝜉𝑑𝑑,min, 𝜉𝜉𝑑𝑑,max] (20)

4. PERFORMANCE EVALUATION

4.1 Simulation Settings

In this section, the performance of array processing based on the 7-element UCA for GPS 
L1/L2 (Byun & Choo under review) was analyzed. The 7-element UCA consists of seven 
identical directional antenna elements (Amotech Co. Ltd. 2017). The radius of the array antenna 
is 10.6 cm (0.5566 𝜆𝜆L1), and the spacing between the antenna elements is 9.2 cm (0.483 𝜆𝜆L1).
𝜆𝜆L1 = 19 cm represents the wavelength of the GPS L1 signal. Fig. 2 shows the shape of the 
array antenna. For the GPS L1 signal, the spacing between the antenna elements is shorter than 
the half wavelength of the signal, and thus, there is mutual coupling effect between the adjacent 
antenna elements. Accordingly, the actual steering vector is different from the theoretical 
steering vector. Based on EM simulation, the actual steering vector was measured at 1 degree 
intervals for elevation angles of 0~90 degrees and azimuth angles of 0~359 degrees.

Table 1 summarizes the simulation environment. The GPS L1 C/A signal was used for the 
simulation, and the performance of array processing depending on the CW jamming was 
analyzed. To configure a channel that is similar to an actual environment, the Jahn’s channel 
model, which is an experimental channel model, was used (Jahn et al. 1996). The number of 
multipath signals and their strengths were determined through the Jahn’s channel model. Also,
the carrier-to-noise ratio was set to 45 dB-Hz; and the jammer-to-signal ratio was set to -40 dB.
The sampling rate of the receiver was assumed to be 4.092 MHz, which is four times the chip 
rate of the GPS L1 C/A signal (1.023 MHz). To examine the effect of the steering vector model 
mismatch depending on array uncertainties and the effect of the array calibration, simulations 
were performed for the following cases based on the same environment.

Case 1: There is no steering vector model mismatch (array uncertainties) (i.e., 𝐂𝐂(𝚿𝚿) = 𝐈𝐈𝑀𝑀).
Case 2: There is steering vector model mismatch, but 𝐂𝐂(𝚿𝚿) is not known.
Case 3: There is steering vector model mismatch, and 𝐂𝐂(𝚿𝚿) is estimated through array 
calibration (For the array calibration, it is assumed that 𝐷𝐷 = 1).
Case 4: There is steering vector model mismatch, and 𝐂𝐂(𝚿𝚿) is estimated through array 
calibration (For the array calibration, it is assumed that 𝐷𝐷 = 18, 𝐷𝐷𝐸𝐸 = 9, 𝐷𝐷𝐴𝐴 = 2).

In Case 1, the actual steering vector was produced through the theoretical steering vector model 
(refer to Eq. (7)); and in Cases 2-4, the actual steering vector was measured through EM 
simulation.

4.2 Simulation Results
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4. PERFORMANCE EVALUATION

4.1 Simulation Settings

In this section, the performance of array processing 

based on the 7-element UCA for GPS L1/L2 (Byun & Choo 

under review) was analyzed. The 7-element UCA consists 

of seven identical directional antenna elements (Amotech 

Co. Ltd. 2017). The radius of the array antenna is 10.6 cm 

(0.5566 λL1), and the spacing between the antenna elements 

is 9.2 cm (0.483 λL1). λL1 = 19 cm represents the wavelength 

of the GPS L1 signal. Fig. 2 shows the shape of the array 

antenna. For the GPS L1 signal, the spacing between the 

antenna elements is shorter than the half wavelength of the 

signal, and thus, there is mutual coupling effect between the 

adjacent antenna elements. Accordingly, the actual steering 

vector is different from the theoretical steering vector. Based 

on EM simulation, the actual steering vector was measured 

at 1 degree intervals for elevation angles of 0~90 degrees 

and azimuth angles of 0~359 degrees.

Table 1 summarizes the simulation environment. The 

GPS L1 C/A signal was used for the simulation, and the 

performance of array processing depending on the CW 

jamming was analyzed. To configure a channel that is 

similar to an actual environment, the Jahn’s channel model, 

Fig. 2.  7-element UCA for GPS L1/L2 (Byun & Choo under review).
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which is an experimental channel model, was used (Jahn 

et al. 1996). The number of multipath signals and their 

strengths were determined through the Jahn’s channel 

model. Also, the carrier-to-noise ratio (CNR) was set to 

45 dB-Hz; and the jammer-to-signal ratio (JSR) was set 

to -40 dB. The sampling rate of the receiver was assumed 

to be 4.092 MHz, which is four times the chip rate of the 

GPS L1 C/A signal (1.023 MHz). To examine the effect 

of the steering vector model mismatch depending on 

array uncertainties and the effect of the array calibration, 

simulations were performed for the following cases based 

on the same environment.

Case 1:	�There is no steering vector model mismatch (array 

Table 1.  Simulation environment.

Parameter Value Remark

Received signals GPS L1 C/A signal LOS signal incident from (20,120) degrees
Continuous-wave signals Jamming signals incident from random directions

Channel model Jahn’s channel Experimental model; Multipath signals are generated in terms of the DOA of the LOS signal.
CNR
JSR

Sampling rate

45 dB-Hz
-40 dB

4.092 MHz

Corresponding SNR: -18 dB
-
-

Fig. 3.  Power spectrum for each direction based on the MUSIC algorithm.

(a) Case 1 (b) Case 2

(d) Case 4(c) Case 3
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uncertainties) (i.e., C(Ψ) = IM).

Case 2:	�There is steering vector model mismatch, but C(Ψ) 

is not known.

Case 3:	�There is steering vector model mismatch, and C(Ψ) 

is estimated through array calibration (For the 

array calibration, it is assumed that D = 1).

Case 4:	�There is steering vector model mismatch, and C(Ψ) 

is estimated through array calibration (For the 

array calibration, it is assumed that D = 18, DE = 9, 

DA = 2).

In Case 1, the actual steering vector was produced 

through the theoretical steering vector model (refer to 

Eq. (7)); and in Cases 2-4, the actual steering vector was 

measured through EM simulation.

4.2 Simulation Results

Fig. 3 shows the power spectrum depending on the direction 

in an environment without electronic interference (jamming 

and multipath signals), based on the MUSIC algorithm. When 

there was no steering vector model mismatch (Case 1), the 

direction of the GPS L1 C/A signal could be accurately detected 

through the MUSIC algorithm, as shown in the figure. However, 

when there was steering vector model mismatch and no array 

calibration (Case 2), false detection occurred, which indicated 

that the signal was received from a completely different 

direction. When the sector division for array calibration was 

insufficient (Case 3), the direction of the incident signal could 

not be detected, either. In Case 4, the main lobe of the power 

spectrum was formed in the direction of the GPS L1 C/A signal, 

and thus, the direction of the incident signal could be detected 

Fig. 4.  Beam pattern of the Capon beamformer.

(a) Case 1 (b) Case 2

(c) Case 4
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through the array calibration. However, a side lobe was formed 

due to the array calibration error, indicating that the direction 

detection rate could deteriorate depending on the environment 

(i.e., signal strength relative to noise).

Fig. 4 shows the beam pattern of the Capon beamformer. 

For the analysis of the beam pattern, it was assumed that 

the look direction is identical to the direction of the GPS 

L1 C/A signal. In Case 1, a main lobe was formed exactly in 

the look direction. However, in Case 2, a beam was formed 

in the direction that is completely different from the look 

direction, and thus, the beamformer function was limited 

due to the steering vector model mismatch. In Case 4, a 

main lobe could be formed in the look direction through 

the array calibration, but a side lobe was formed due to the 

array calibration error, as shown in Fig. 3. When there is 

an interference signal in the direction of the side lobe, the 

reception SINR could deteriorate significantly.

To analyze the output SINR of the Capon beamformer, 

Monte Carlo simulation was carried out 2,000 times. For 

the simulation, the direction of the GPS L1 C/A signal was 

fixed (Table 1), and the direction of the jamming signal was 

set to random, but it was made to be at least 20 degrees 

apart from the direction of the LOS signal. Fig. 5 shows the 

output SINR of the Capon beamformer depending on the 

number of jamming signals and the number of sectors for 

array calibration. When the array calibration was performed 

in more detail, the output SINR increased. In general, the 

output SINR decreased as the number of jamming signals 

increased. This is because the effect of the interference 

signal remained due to the side lobe formation depending 

on the array calibration error.

5. CONCLUSIONS

In this study, the performance of array processing depending 

on the array uncertainties (e.g., mutual coupling between 

antenna elements, position error of the antenna element, and 

anisotropic beam pattern) was analyzed through simulation, 

along with the performance of array processing depending 

on the pilot-based array calibration in an array uncertainty 

environment. To implement a simulation environment that 

is similar to an actual environment, the actual steering vector 

of 7-element UCA was measured through EM simulation, and 

the Jahn’s channel model was used. The analysis of the power 

spectrum and beam pattern for each direction showed that the 

direction detection and interference elimination performance 

was limited due to the array uncertainties, and the performance 

was improved through the array calibration. In addition, the 

analysis of the beamformer output SINR showed that higher 

performance could be obtained when the array calibration 

was conducted in more detail. In the future, studies on the 

minimization of the side lobe effect through the reduction of 

the array calibration error need to be conducted.
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