References
- L. Arambasic, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 (2007), no. 2, 469-478. https://doi.org/10.1090/S0002-9939-06-08498-X
- P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl. 325 (2007), no. 1, 571-585. https://doi.org/10.1016/j.jmaa.2006.02.012
- P. Balazs, Hilbert Schmidt operators and frames classification, approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), no. 2, 315-330. https://doi.org/10.1142/S0219691308002379
- P. Balazs, J. P. Antoine, and A. Grybos, Weighted and controlled frames, mutual relationship and first numerical properties, Int. J. Wavelets Multiresolut. Inf. Process. 8 (2010), no. 1, 109-132. https://doi.org/10.1142/S0219691310003377
- P. Balazs, D. Bayer, and A. Rahimi, Multipliers for continuos frames in Hilbert spaces, J. Phys. A: Math. Theor. 45 (2012), 244023, 20 pages.
- P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher, Double preconditioning for Gabor frames, IEEE Trans. Signal Process. 54 (2006), 4597-4610. https://doi.org/10.1109/TSP.2006.882100
- P. Balazs, D. T. Stoeva, and J. P. Antoine, Classification of general sequences by frame-related operators, Sampl. Theory Signal Image Process. 10 (2011), no. 1-2, 151-170.
- A. Bourouihiya, The tensor product of frames, Sampl. Theory Signal Image Process. 7 (2008), no. 1, 65-76.
- H.-Q. Bui and R. S. Laugesen, Frequency-scale frames and the solution of the Mexican hat problem, Constr. Approx. 33 (2011), no. 2, 163-189. https://doi.org/10.1007/s00365-010-9098-3
- O. Christensen and R. S. Laugesen, Approximate dual frames in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process. 9 (2011), 77-90.
- I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283. https://doi.org/10.1063/1.527388
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
- H. G. Feichtinger and K. Grochenig, Banach spaces related to integrable group representations and their atomic decomposition I, J. Funct. Anal. 86 (1989), no. 2, 307-340. https://doi.org/10.1016/0022-1236(89)90055-4
- H. G. Feichtinger and N. Kaiblinger, Varying the time-frequency lattice of Gabor frames, Trans. Amer. Math. Soc. 356 (2004), no. 5, 2001-2023. https://doi.org/10.1090/S0002-9947-03-03377-4
- M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory. 48 (2002), no. 2, 273-314.
- J. E. Gilbert, Y. S. Han, J. A. Hogan, J. D. Lakey, D. Weiland, and G. Weiss, Smooth molecular decompositions of functions and singular integral operators, Mem. Amer. Math. Soc. 156 (2002), no. 742, 1-74.
- D. Han, W. Jing, D. Larson, and R. Mohapatra, Riesz bases and their dual modular frames in Hilbert C*-modules, J. Math. Anal. Appl. 343 (2008), no. 1, 246-256. https://doi.org/10.1016/j.jmaa.2008.01.013
- M. Holschneider, Waveletes. An analysis tool, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
- A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), no. 1, 1-12. https://doi.org/10.1007/s12044-007-0001-5
- A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), no. 3, 433-446. https://doi.org/10.1142/S0219691308002458
- A. Khosravi and B. Khosravi, G-frames and modular Riesz bases, Int. J. Wavelets Multiresolut. Inf. Process. 10 (2012), no. 2, 1-12.
- A. Khosravi and M. Mirzaee Azandaryani, Fusion frames and g-frames in tensor product and direct sum of Hilbert spaces, Appl. Anal. Discrete Math. 6 (2012),no. 2, 287-303. https://doi.org/10.2298/AADM120619014K
- A. Khosravi and M. Mirzaee Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta. Math. Sci. B Engl. Ed. 34 (2014), no. 3, 639-652. https://doi.org/10.1016/S0252-9602(14)60036-9
- A. Khosravi and M. Mirzaee Azandaryani, Bessel multipliers in Hilbert C*-modules, Banach. J. Math. Anal. 9 (2015), no. 3, 153-163. https://doi.org/10.15352/bjma/09-3-11
- G. Kutyniok, K. A. Okoudjou, F. Philipp, and E. K. Tuley, Scalable frames, Linear Algebra Appl. 438 (2013), no. 5, 2225-2238. https://doi.org/10.1016/j.laa.2012.10.046
- E. C. Lance, Hilbert C*-modules: a Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, 1995.
- M. Laura Arias and M. Pacheco, Bessel fusion multipliers, J. Math. Anal. Appl. 348 (2008), 581-588. https://doi.org/10.1016/j.jmaa.2008.07.056
- S. Li and D. Yan, Frame fundamental sensor modeling and stability of one-sided frame perturbation, Acta Appl. Math. 107 (2009), no. 1-3, 91-103. https://doi.org/10.1007/s10440-008-9419-8
- M. Mirzaee Azandaryani, Approximate duals and nearly Parseval frames, Turk. J. Math. 39 (2015), no. 4, 515-526. https://doi.org/10.3906/mat-1408-37
- M. Mirzaee Azandaryani, Bessel multipliers on the tensor product of Hilbert C*-modules, Int. J. Indust. Math. 8 (2016), 9-16.
- G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, San Diego, 1990.
- A. Rahimi, Multipliers of generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 37 (2011), no. 1, 63-80.
- A. Rahimi and P. Balazs, Multipliers for p-Bessel sequences in Banach spaces, Integral Equations Operator Theory 68 (2010), no. 2, 193-205. https://doi.org/10.1007/s00020-010-1814-7
- M. Speckbacher and P. Balazs, Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups, J. Phys. A 48 (2015), no. 39, 395201, 16 pp.
- D. T. Stoeva and P. Balazs, Unconditional convergence and invertibility of multipliers, arXiv: 0911.2783, 2009. https://doi.org/10.1016/j.acha.2011.11.001
- D. T. Stoeva and P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal. 33 (2012), no. 2, 292-299. https://doi.org/10.1016/j.acha.2011.11.001
- W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452. https://doi.org/10.1016/j.jmaa.2005.09.039
- T. Werther, Y. C. Eldar, and N. K. Subbanna, Dual Gabor frames: theory and computational aspects, IEEE Trans. Signal Process. 53 (2005), no. 11, 4147-4158. https://doi.org/10.1109/TSP.2005.857049
- X. Xiao and X. Zeng, Some properties of g-frames in Hilbert C*-modules, J. Math. Anal. Appl. 363 (2010), no. 2, 399-408. https://doi.org/10.1016/j.jmaa.2009.08.043