References
- U. Albrecht, J. Dauns, and L. Fuchs, Torsion-freeness and non-singularity over right p.p.-rings, J. Algebra 285 (2005), no. 1, 98-119. https://doi.org/10.1016/j.jalgebra.2004.10.020
- E. Buyukasik and Y. Durgun, Absolutely s-pure modules and neat-flat modules, Comm. Algebra 43 (2015), no. 2, 384-399. https://doi.org/10.1080/00927872.2013.842246
- E. Buyukasik and Y. Durgun, Neat-flat modules, Comm. Algebra 44 (2016), no. 1, 416-428. https://doi.org/10.1080/00927872.2014.982816
- A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc. (2) 21 (1980), no. 3, 434-444.
- J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Birkhauser Verlag, Basel, 2006.
- P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959), no. 71, 380-398. https://doi.org/10.1007/BF01181410
- N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending modules, With the collaboration of John Clark and N. Vanaja, Pitman Research Notes in Mathematics Series, 313, Longman Scientific & Technical, Harlow, 1994.
- E. E. Enochs and O. M. G. Jenda, Relative homological algebra, de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000.
- L. Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970.
- L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131-143. https://doi.org/10.1007/s10998-012-7509-x
- K. R. Goodearl, Singular torsion and the splitting properties, Memoirs of the American Mathematical Society, No. 124, American Mathematical Society, Providence, R. I., 1972.
- K. R. Goodearl, Ring Theory, Nonsingular Rings and Modules. Pure and Applied Mathematics, No. 33, Marcel Dekker, Inc., New York-Basel, 1976.
- K. Honda, Realism in the theory of abelian groups. I, Comment. Math. Univ. St. Paul. 5 (1956), 37-75.
- T. Kepka, On one class of purities, Comment. Math. Univ. Carolinae 14 (1973), 139-154.
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
- A. P. Misina and L. A. Skornjakov, Abelian groups and modules, Translated from Russian from Abelevy gruppy i moduli, Izdat. Nauka, Moscow, 1969.
- W. K. Nicholson and M. F. Yousif, Quasi-Frobenius rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
- A. Pancar, Generation of proper classes of short exact sequences, Internat. J. Math. Math. Sci. 20 (1997), no. 3, 465-473. https://doi.org/10.1155/S016117129700063X
- G. Puninski and P. Rothmaler, Pure-projective modules, J. London Math. Soc. (2) 71 (2005), no. 2, 304-320. https://doi.org/10.1112/S0024610705006290
- G. Renault, Etude de certains anneaux A lies aux sous-modules complements dun a-module, C. R. Acad. Sci. Paris 259 (1964), 4203-4250.
- S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Lecture Notes in Math., 1448, 116-124, Noncommutative ring theory (Athens, OH, 1989), Springer, Berlin, 1990.
- J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
- F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.
- E. G. Sklyarenko, Relative homological algebra in the category of modules, Russian Math. Surveys 33 (1978), no. 3, 97-137. Translated from Uspekhi Mat. Nauk 33 (1978), no. 3, 85-120. https://doi.org/10.1070/RM1978v033n03ABEH002466
- A. Tercan, On CLS-modules, Rocky Mountain J. Math. 25 (1995), no. 4, 1557-1564. https://doi.org/10.1216/rmjm/1181072161
- C. P. Walker, Relative homological algebra and Abelian groups, Illinois J. Math. 10 (1966), 186-209.
- J. Wang and D. Wu, When an S-closed submodule is a direct summand, Bull. Korean Math. Soc. 51 (2014), no. 3, 613-619. https://doi.org/10.4134/BKMS.2014.51.3.613
- Q. Zeng, On generalized CS-modules, Czechoslovak Math. J. 65(140) (2015), no. 4, 891-904. https://doi.org/10.1007/s10587-015-0215-0
- H. Zoschinger, Schwach-flache moduln, Comm. Algebra 41 (2013), no. 12, 4393-4407. https://doi.org/10.1080/00927872.2012.699570