DOI QR코드

DOI QR Code

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE

  • Received : 2016.07.30
  • Published : 2017.07.01

Abstract

A curve ${\gamma}$ immersed in the three-dimensional sphere ${\mathbb{S}}^3$ is said to be a slant helix if there exists a Killing vector field V(s) with constant length along ${\gamma}$ and such that the angle between V and the principal normal is constant along ${\gamma}$. In this paper we characterize slant helices in ${\mathbb{S}}^3$ by means of a differential equation in the curvature ${\kappa}$ and the torsion ${\tau}$ of the curve. We define a helix surface in ${\mathbb{S}}^3$ and give a method to construct any helix surface. This method is based on the Kitagawa representation of flat surfaces in ${\mathbb{S}}^3$. Finally, we obtain a geometric approach to the problem of solving natural equations for slant helices in the three-dimensional sphere. We prove that the slant helices in ${\mathbb{S}}^3$ are exactly the geodesics of helix surfaces.

Keywords

References

  1. M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1503-1509. https://doi.org/10.1090/S0002-9939-97-03692-7
  2. V. N. Berestovskii and Y. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Sib. Math. J. 49 (2008), no. 3, 395-407. https://doi.org/10.1007/s11202-008-0039-3
  3. F. Dillen, J. Fastenakels, J. Van der Veken, and L. Vrancken, Constant angle surfaces in ${\mathbb{S}}^2{\times}{\mathbb{R}}$, Monatsh. Math. 152 (2007), no. 2, 89-96. https://doi.org/10.1007/s00605-007-0461-9
  4. A. J. Di Scala and G. Ruiz-Hernandez, Helix submanifolds of euclidean spaces, Monasth. Math. 157 (2009), no. 3, 205-215.
  5. J. M. Espinar and I. S. de Oliveira, Locally convex surfaces immersed in a Killing submersion, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 1, 155-171. https://doi.org/10.1007/s00574-013-0007-9
  6. J. A. Galvez, Surfaces of constant curvature in 3-dimensional space forms, Mat. Contemp. 37 (2009), 1-42.
  7. J. A. Galvez and P. Mira, Isometric immersions of ${\mathbb{R}}^2$ into ${\mathbb{R}}^4$ and perturbation of Hopf tori, Math. Z. 266 (2010), no. 1, 207-227. https://doi.org/10.1007/s00209-009-0564-1
  8. S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153-163.
  9. Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in $S^3$, J. Math. Soc. Japan 40 (1988), no. 3, 457-476. https://doi.org/10.2969/jmsj/04030457
  10. J. Langer and D. A. Singer, The total squared curvature of closed curves, J. Differential Geom. 20 (1984), no. 1, 1-22. https://doi.org/10.4310/jdg/1214438990
  11. J. Langer and D. A. Singer, Knotted elastic curves in ${\mathbb{R}}^3$, J. London Math. Soc. 30 (1984), no. 3, 512-520.
  12. S. Montaldo and I. I. Onnis, Helix surfaces in the Berger sphere, Israel J. Math. 201 (2014), no. 2, 949-966. https://doi.org/10.1007/s11856-014-1055-6
  13. M. I. Munteanu and A. I. Nistor, A new approach on constant angle surfaces in ${\mathbb{E}}^3$, Turkish J. Math. 33 (2009), no. 2, 169-178.
  14. U. Pinkall, Hopf tori in $S^3$, Invent. Math. 81 (1985), no. 2, 379-386. https://doi.org/10.1007/BF01389060
  15. P. D. Scofield, Curves of constant precession, Amer. Math. Monthly 102 (1995), no. 6, 531-537. https://doi.org/10.1080/00029890.1995.12004613
  16. D. J. Struik, Lectures on Classical Differential Geometry, Dover, New York, 1988. Reprint of second edition (Reading, 1961).
  17. G. Wiegmink, Total bending of vector fields on the sphere ${\mathbb{S}}^3$, Differential Geom. Appl. 6 (1996), no. 3, 219-236. https://doi.org/10.1016/0926-2245(96)82419-3