DOI QR코드

DOI QR Code

Alternatives to In Vivo Draize Rabbit Eye and Skin Irritation Tests with a Focus on 3D Reconstructed Human Cornea-Like Epithelium and Epidermis Models

  • Received : 2017.06.05
  • Accepted : 2017.06.14
  • Published : 2017.07.15

Abstract

Human eyes and skin are frequently exposed to chemicals accidentally or on purpose due to their external location. Therefore, chemicals are required to undergo the evaluation of the ocular and dermal irritancy for their safe handling and use before release into the market. Draize rabbit eye and skin irritation test developed in 1944, has been a gold standard test which was enlisted as OECD TG 404 and OECD TG 405 but it has been criticized with respect to animal welfare due to invasive and cruel procedure. To replace it, diverse alternatives have been developed: (i) For Draize eye irritation test, organotypic assay, in vitro cytotoxicity-based method, in chemico tests, in silico prediction model, and 3D reconstructed human cornealike epithelium (RhCE); (ii) For Draize skin irritation test, in vitro cytotoxicity-based cell model, and 3D reconstructed human epidermis models (RhE). Of these, RhCE and RhE models are getting spotlight as a promising alternative with a wide applicability domain covering cosmetics and personal care products. In this review, we overviewed the current alternatives to Draize test with a focus on 3D human epithelium models to provide an insight into advancing and widening their utility.

Keywords

References

  1. Winder, C., Azzi, R. and Wagner, D. (2005) The development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals. J. Hazard. Mater., 125, 29-44. https://doi.org/10.1016/j.jhazmat.2005.05.035
  2. OECD (2002) Test No. 405: Acute Eye Irritation/Corrosion, OECD Publishing.
  3. Wilhelmus, K.R. (2001) The Draize eye test. Surv. Ophthalmol., 45, 493-515. https://doi.org/10.1016/S0039-6257(01)00211-9
  4. York, M. and Steiling, W. (1998) A critical review of the assessment of eye irritation potential using the Draize rabbit eye test. J. Appl. Toxicol., 18, 233-240. https://doi.org/10.1002/(SICI)1099-1263(199807/08)18:4<233::AID-JAT496>3.0.CO;2-Y
  5. Christian, M.S. and Diener, R.M. (1996) Soaps and detergents: alternatives to animal eye irritation tests. Int. J. Toxicol., 15, 1-44. https://doi.org/10.3109/10915819609048331
  6. Draize, J.H., Woodard, G. and Calvery, H.O. (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther., 82, 377-390.
  7. Fitzhugh, O. and Woodard, G. (1946) The toxicities of compounds related to 2,3-dimercaptopropanol (BAL) with a note on their relative therapeutic efficiency. J. Pharmacol. Exp. Ther., 87, 23-27.
  8. Kay, J. and Calandra, J. (1962) Interpretation of eye irritation tests. J. Soc. Cosmet. Chem., 13, 281-289.
  9. Rohde B. (1992) In vivo eye irritation test methods in Ophthalmic Toxicology. Raven Press, New York, pp. 83-108.
  10. Sekizawa, J., Yasuhara, K., Suyama, Y., Yamanaka, S., Tobe, M. and Nishimura, M. (1994) A simple method for screening assessment of skin and eye irritation. J. Toxicol. Sci., 19, 25-35. https://doi.org/10.2131/jts.19.25
  11. OECD (2015) Test No. 404: Acute Dermal Irritation/Corrosion, OECD Publishing.
  12. UN (2011) United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS).
  13. Griffith, J.F., Nixon, G.A., Bruce, R.D., Reer, P.J. and Bannan, E.A. (1980) Dose-response studies with chemical irritants in the albino rabbit eye as a basis for selecting optimum testing conditions for predicting hazard to the human eye. Toxicol. Appl. Pharmacol., 55, 501-513. https://doi.org/10.1016/0041-008X(80)90052-6
  14. Freeberg, F., Nixon, G., Reer, P., Weaver, J., Bruce, R., Griffith, J. and Sanders, L.W., 3rd. (1986) Human and rabbit eye responses to chemical insult. Toxicol. Sci., 7, 626-634. https://doi.org/10.1093/toxsci/7.4.626
  15. Calvin, G. (1992) New approaches to the assessment of eye and skin irritation. Toxicol. Lett., 64-65 Spec No, 157-164. https://doi.org/10.1016/0378-4274(92)90185-M
  16. Burton, A., York, M. and Lawrence, R. (1981) The in vitro assessment of severe eye irritants. Food Cosmet. Toxicol., 19, 471-480. https://doi.org/10.1016/0015-6264(81)90452-1
  17. Whittle, E., Basketter, D., York, M., Kelly, L., Hall, T., McCall, J., Botham, P., Esdaile, D. and Gardner, J. (1992) Findings of an interlaboratory trial of the enucleated eye method as an alternative eye irritation test. Toxicol. Method., 2, 30-41. https://doi.org/10.3109/15376519209064803
  18. York, M., Wilson, A. and Newsome, C. (1994) The classification of soluble silicates for eye hazard using the enucleated rabbit eye test. Toxicol. In Vitro, 8, 1265-1268. https://doi.org/10.1016/0887-2333(94)90119-8
  19. Bruner, L., Evans, M., McPherson, J., Southee, J. and Williamson, P. (1998) Investigation of ingredient interactions in cosmetic formulations using isolated bovine corneas. Toxicol. In Vitro, 12, 669-690. https://doi.org/10.1016/S0887-2333(98)00047-2
  20. Prinsen, M. and Koëter, H. (1993) Justification of the enucleated eye test with eyes of slaughterhouse animals as an alternative to the Draize eye irritation test with rabbits. Food Chem. Toxicol., 31, 69-76. https://doi.org/10.1016/0278-6915(93)90182-X
  21. OECD (2013) Test No. 438: Isolated Chicken Eye Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage, OECD Publishing, Paris.
  22. OECD (2009) Test No. 438: Isolated Chicken Eye Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing.
  23. OECD (2009) Test No. 438: Isolated Chicken Eye Test Method for Identifying Ocular Corrosives and Severe Irritants, OECD Publishing.
  24. Gautheron, P., Dukik, M., Alix, D. and Sina, J.F. (1992) Bovine corneal opacity and permeability test: an in vitro assay of ocular irritancy. Toxicol. Sci., 18, 442-449. https://doi.org/10.1093/toxsci/18.3.442
  25. Casterton, P., Potts, L. and Klein, B. (1996) A novel approach to assessing eye irritation potential using the bovine corneal opacity and permeability assay. J. Toxicol. Cutaneous Ocul. Toxicol., 15, 147-163. https://doi.org/10.3109/15569529609048870
  26. Guo, X., Yang, X.F., Yang, Y., Hans, R., Cai, J.H., Xue, J.Y., Tan, X.H., Xie, X.P., Xiong, X.K. and Huang, J.M. (2012) Prediction of ocular irritancy of 26 chemicals and 26 cosmetic products with isolated rabbit eye (IRE) test. Biomed. Environ. Sci., 25, 359-366.
  27. Luepke, N.P. (1985) Hen's egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol., 23, 287-291. https://doi.org/10.1016/0278-6915(85)90030-4
  28. Spielmann, H., Kalweit, S., Liebsch, M., Wirnsberger, T., Gerner, I., Bertram-Neis, E., Krauser, K., Kreiling, R., Miltenburger, H., Pape, W. and Steiling, W. (1993) Validation study of alternatives to the Draize eye irritation test in Germany: cytotoxicity testing and HET-CAM test with 136 industrial chemicals. Toxicol. In Vitro, 7, 505-510. https://doi.org/10.1016/0887-2333(93)90055-A
  29. Steiling, W. (1994) The Hen's Egg Test on the Chorioallantoic Membrane (HET-CAM) INCITTOX no96, ECVAM DBALM. p. 18.
  30. Hagino, S., Kinoshita, S., Tani, N., Nakamura, T., Ono, N., Konishi, K., Iimura, H., Kojima, H. and Ohno, Y. (1999) Interlaboratory validation of in vitro eye irritation tests for cosmetic ingredients. (2) Chorioallantoic membrane (CAM) test. Toxicol. In Vitro, 13, 99-113. https://doi.org/10.1016/S0887-2333(98)00065-4
  31. Luepke, N. and Wallat, S. (1987) HET-CAM reproducibility studies in Alternative Methods in Toxicology (Vol. 5) - In Vitro Toxicology: Approaches to Validation, pp. 353-363.
  32. Kalweit, S., Besoke, R., Gerner, I. and Spielmann, H. (1990) A national validation project of alternative methods to the Draize rabbit eye test. Toxicol. In Vitro, 4, 702-706. https://doi.org/10.1016/0887-2333(90)90147-L
  33. Hagino, S., Itagaki, H., Kato, S., Kobayashi, T. and Tanaka, M. (1991) Quantitative evaluation to predict the eye irritancy of chemicals: modification of chorioallantoic membrane test by using trypan blue. Toxicol. In Vitro, 5, 301-304. https://doi.org/10.1016/0887-2333(91)90006-Y
  34. Vinardell, M. and García, L. (2000) The quantitive chlorioallantoic membrane test using trypan blue stain to predict the eye irritancy of liquid scintillation cocktails. Toxicol. In Vitro, 14, 551-555. https://doi.org/10.1016/S0887-2333(00)00050-3
  35. Lagarto, A., Vega, R., Guerra, I. and Gonzalez, R. (2006) In vitro quantitative determination of ophthalmic irritancy by the chorioallantoic membrane test with trypan blue staining as alternative to eye irritation test. Toxicol. In Vitro, 20, 699-702. https://doi.org/10.1016/j.tiv.2005.10.003
  36. Hayashi, T., Itagaki, H., Fukuda, T., Tamura, U. and Kato, S. (1994) Multivariate factorial analysis of data obtained in seven in vitro test systems for predicting eye irritancy. Toxicol. In Vitro, 8, 215-220. https://doi.org/10.1016/0887-2333(94)90185-6
  37. Gordon, V., Kelly, C. and Bergman, H. (1990) Applications of the EYTEXTM method. Toxicol. In Vitro, 4, 314-317. https://doi.org/10.1016/0887-2333(90)90071-Z
  38. Miyazawa, K., Ogawa, M. and Mitsui, T. (1984) The physicochemical properties and protein denaturation potential of surfactant mixtures. Int. J. Cosmet. Sci., 6, 33-46. https://doi.org/10.1111/j.1467-2494.1984.tb00356.x
  39. Hayashi, T., Itagaki, H., Fukuda, T., Tamura, U. and Kato, S. (1993) Quantitative evaluation for the prediction of eye irritation using hemoglobin. AATEX, 2, 25-31.
  40. Eskes, C., van Vliet, E., Schaffer, M. and Zuang, V. (2014) Ocular toxicity in In Vitro Toxicology Systems. Springer, pp. 169-197.
  41. Saliner, A.G., Patlewicz, G. and Worth, A.P. (2008) A review of (Q) SAR models for skin and eye irritation and corrosion. QSAR Comb. Sci., 27, 49-59. https://doi.org/10.1002/qsar.200710103
  42. Modi, S., Hughes, M., Garrow, A. and White, A. (2012) The value of in silico chemistry in the safety assessment of chemicals in the consumer goods and pharmaceutical industries. Drug Discov. Today, 17, 135-142. https://doi.org/10.1016/j.drudis.2011.10.022
  43. Verma, R. and Matthews, E. (2015) An in silico expert system for the identification of eye irritants. SAR QSAR Environ. Res., 26, 383-395. https://doi.org/10.1080/1062936X.2015.1039578
  44. Valerio, L.G., Jr. (2009) In silico toxicology for the pharmaceutical sciences. Toxicol. Appl. Pharmacol., 241, 356-370. https://doi.org/10.1016/j.taap.2009.08.022
  45. Nigsch, F., Macaluso, N.M., Mitchell, J.B. and Zmuidinavicius, D. (2009) Computational toxicology: an overview of the sources of data and of modelling methods. Expert Opin. Drug Metab. Toxicol., 5, 1-14. https://doi.org/10.1517/17425250802660467
  46. OECD (2012) Test No. 460: Fluorescein Leakage Test Method for Identifying Ocular Corrosives and Severe Irritants, OECD Publishing.
  47. Harbell, J., Osborne, R., Carr, G. and Peterson, A. (1999) Assessment of the cytosensor microphysiometer assay in the COLIPA in vitro eye irritation validation study. Toxicol. In Vitro, 13, 313-323. https://doi.org/10.1016/S0887-2333(98)00090-3
  48. Takahashi, Y., Koike, M., Honda, H., Ito, Y., Sakaguchi, H., Suzuki, H. and Nishiyama, N. (2008) Development of the short time exposure (STE) test: an in vitro eye irritation test using SIRC cells. Toxicol. In Vitro, 22, 760-770. https://doi.org/10.1016/j.tiv.2007.11.018
  49. Jones, P.A., Bracher, M., Marenus, K. and Kojima, H. (1999) Performance of the neutral red uptake assay in the COLIPA international validation study on alternatives to the rabbit eye irritation test. Toxicol. In Vitro, 13, 325-333. https://doi.org/10.1016/S0887-2333(98)00080-0
  50. Pape, W.J., Pfannenbecker, U. and Hoppe, U. (1987-1988) Validation of the red blood cell test system as in vitro assay for the rapid screening of irritation potential of surfactants. Mol. Toxicol., 1, 525-536.
  51. Kruszewski, F., Walker, T. and DiPasquale, L. (1997) Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Toxicol. Sci., 36, 130-140. https://doi.org/10.1093/toxsci/36.2.130
  52. Nash, J.R., Mun, G., Raabe, H.A. and Curren, R. (2014) Using the cytosensor microphysiometer to assess ocular toxicity. Curr. Protoc. Toxicol., 61, 1.13.1-11.
  53. Kojima, H., Hayashi, K., Sakaguchi, H., Omori, T., Otoizumi, T., Sozu, T., Kuwahara, H., Hayashi, T., Sakaguchi, M., Toyoda, A., Goto, H., Watanabe, S., Ahiko, K., Nakamura, T. and Morimoto, T. (2013) Second-phase validation study of short time exposure test for assessment of eye irritation potency of chemicals. Toxicol. In Vitro, 27, 1855-1869. https://doi.org/10.1016/j.tiv.2013.05.013
  54. Takahashi, Y., Hayashi, K., Abo, T., Koike, M., Sakaguchi, H. and Nishiyama, N. (2011) The Short Time Exposure (STE) test for predicting eye irritation potential: intra-laboratory reproducibility and correspondence to globally harmonized system (GHS) and EU eye irritation classification for 109 chemicals. Toxicol. In Vitro, 25, 1425-1434. https://doi.org/10.1016/j.tiv.2011.04.012
  55. OECD (2015) Test No. 491: Short Time Exposure In Vitro Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage, OECD Publishing.
  56. Borenfreund, E. and Puerner, J.A. (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett., 24, 119-124. https://doi.org/10.1016/0378-4274(85)90046-3
  57. Ikarashi, Y., Tsuchiya, T. and Nakamura, A. (1997) [Cytotoxicity of chemicals used in household products: estimation of eye irritating potency of 25 chemicals tested during 1991-1996]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku, (115), 130-134.
  58. Vian, L., Vincent, J., Maurin, J., Fabre, I., Giroux, J. and Cano, J. (1995) Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation. Toxicol. In Vitro, 9, 185-190. https://doi.org/10.1016/0887-2333(94)00200-E
  59. Rougier, A., Cottin, M., De Silva, O., Roguet, R., Catroux, P., Toufic, A. and Dossou, K. (1991) In vitro methods: their relevance and complementarity in ocular safety assessment. Lens Eye Toxic. Res., 9, 229-245.
  60. Gettings, S.D., Lordo, R.A., Hintze, K.L., Bagley, D.M., Casterton, P.L., Chudkowski, M., Curren, R.D., Demetrulias, J.L., Dipasquale, L.C., Earl, L.K., Feder, P.I., Galli, C.L., Glaza, S.M., Gordon, V.C., Janus, J., Kurtz, P.J., Marenus, K.D., Moral, J., Pape, W.J., Renskers, K.J., Rheins, L.A., Roddy, M.T., Rozen, M.G., Tedeschi, J.P. and Zyracki, J. (1996) The CTFA Evaluation of Alternatives Program: an evaluation of in vitro alternatives to the Draize primary eye irritation test. (Phase III) surfactant-based formulations. Food Chem. Toxicol., 34, 79-117. https://doi.org/10.1016/0278-6915(96)89525-1
  61. Antoni, D., Burckel, H., Josset, E. and Noel, G. (2015) Threedimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci., 16, 5517-5527. https://doi.org/10.3390/ijms16035517
  62. McLaughlin, C.R., Tsai, R., Latorre, M.A. and Griffith, M. (2009) Bioengineered corneas for transplantation and in vitro toxicology. Front. Biosci. (Landmark Ed.), 14, 3326-3337.
  63. Sheasgreen, J., Klausner, M., Kandarova, H. and Ingalls, D. (2009) The MatTek story - how the three Rs principles led to 3-D tissue success! Altern. Lab. Anim., 37, 611-622.
  64. Pfannenbecker, U., Bessou-Touya, S., Faller, C., Harbell, J., Jacob, T., Raabe, H., Tailhardat, M., Alepee, N., De Smedt, A., De Wever, B., Jones, P., Kaluzhny, Y., Le Varlet, B., McNamee, P., Marrec-Fairley, M. and Van Goethem, F. (2013) Cosmetics Europe multi-laboratory pre-validation of the Epi-$Ocular^{TM}$ reconstituted human tissue test method for the prediction of eye irritation. Toxicol. In Vitro, 27, 619-626. https://doi.org/10.1016/j.tiv.2012.11.007
  65. OECD (2015) Test No. 492: Reconstructed human Cornealike Epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage (OECD Ed.). OECD Publishing, Paris.
  66. Jung, K.M., Lee, S.H., Ryu, Y.H., Jang, W.H., Jung, H.S., Han, J.H., Seok, S.H., Park, J.H., Son, Y., Park, Y.H. and Lim, K.M. (2011) A new 3D reconstituted human corneal epithelium model as an alternative method for the eye irritation test. Toxicol. In Vitro, 25, 403-410. https://doi.org/10.1016/j.tiv.2010.10.019
  67. Balls, M., Brantom, P., Cassidy, S., Esdaile, D., Fentem, J., Liebsch, M., McPherson, J., Pfannenbecker, U. and Prinsen, M. (1999) Preliminary evaluation of the application of reference standards in the prevalidation and validation of in vitro test for eye irritation in Alternatives to Animal Testing II, proceedings (Clark, D.G., Lisansky, S.G. and Macmillan, R. Ed.). Brussels CPL Press, Berkshire, pp. 201-204.
  68. Alépée, N., Bessou-Touya, S., Cotovio, J., De Smedt, A., De Wever, B., Faller, C., Jones, P., Le Varlet, B., Marrec-Fairley, M., Pfannenbecker, U., Tailhardat, M., van Goethem, F. and McNamee, P. (2013) Cosmetics Europe multi-laboratory prevalidation of the $SkinEthic^{TM}$ reconstituted human corneal epithelium test method for the prediction of eye irritation. Toxicol. In Vitro, 27, 1476-1488. https://doi.org/10.1016/j.tiv.2013.02.009
  69. Nguyen, D., Beuerman, R., De Wever, B. and Rosdy, M. (2003) Three-dimensional construct of the human corneal epithelium for in vitro toxicology in Alternative Toxicological Methods. CRC Press LLC, pp. 147-159.
  70. Freeman, S.J., Alepee, N., Barroso, J., Cole, T., Compagnoni, A., Rubingh, C., Eskes, C., Lammers, J., McNamee, P., Pfannenbecker, U. and Zuang, V. (2010) Prospective validation study of reconstructed human tissue models for eye irritation testing. ALTEX, 27, 255-260.
  71. Barroso, J., Alepee, N., Cole, T., Eskes, C., Freeman, S., Liska, R., McNamee, P., Pfannenbecker, U., Reus, A. and Rubingh, C. (2015) EURL ECVAM - Cosmetics Europe prospective validation study of Reconstructed human tissuebased test methods for serious eye damage/eye irritation testing. Poster Presented at the Congress of the European Societies of Toxicology (EUROTOX), Porto, Portugal, pp. 13-16, September, 2015.
  72. Alepee, N., Leblanc, V., Adriaens, E., Grandidier, M., Lelievre, D., Meloni, M., Nardelli, L., Roper, C., Santirocco, E., Toner, F., Van Rompay, A., Vinall, J. and Cotovio, J. (2016) Multilaboratory validation of SkinEthic HCE test method for testing serious eye damage/eye irritation using liquid chemicals. Toxicol. In Vitro, 31, 43-53. https://doi.org/10.1016/j.tiv.2015.11.012
  73. Katoh, M., Uemura, N., Hamajima, F., Ogasawara, T. and Hata, K.-i. (2012) Morphological characterization of a reconstructed human corneal epithelial model (LabCyte CORNEAMODEL) as an alternative to the Draize eye test for the assessment of eye irritation. AATEX, 17, 2-8.
  74. Katoh, M., Hamajima, F., Ogasawara, T. and Hata, K.-i. (2013) Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL. Toxicol. In Vitro, 27, 2184-2192. https://doi.org/10.1016/j.tiv.2013.08.008
  75. Osborne, R. and Perkins, M. (1991) In vitro skin irritation testing with human skin cell cultures. Toxicol. In Vitro, 5, 563-567. https://doi.org/10.1016/0887-2333(91)90094-T
  76. Sanchez, L., Mitjans, M., Infante, M. and Vinardell, M. (2006) Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability. Toxicol. Lett., 161, 53-60. https://doi.org/10.1016/j.toxlet.2005.07.015
  77. Gueniche, A. and Ponec, M. (1993) Use of human skin cell cultures for the estimation of potential skin irritants. Toxicol. In Vitro, 7, 15-24. https://doi.org/10.1016/0887-2333(93)90108-H
  78. Corsini, E., Bruccoleri, A., Marinovich, M. and Galli, C. (1996) Endogenous interleukin-$1{\alpha}$ is associated with skin irritation induced by tributyltin. Toxicol. Appl. Pharmacol., 138, 268-274. https://doi.org/10.1006/taap.1996.0125
  79. Martinez, V., Corsini, E., Mitjans, M., Pinazo, A. and Vinardell, M.P. (2006) Evaluation of eye and skin irritation of arginine-derivative surfactants using different in vitro endpoints as alternatives to the in vivo assays. Toxicol. Lett., 164, 259-267. https://doi.org/10.1016/j.toxlet.2006.01.005
  80. Roguet, R. (1999) Use of skin cell cultures for in vitro assessment of corrosion and cutaneous irritancy. Cell Biol. Toxicol., 15, 63-75. https://doi.org/10.1023/A:1007506824183
  81. Hockley, K. and Baxter, D. (1986) Use of the 3T3 cell-neutral red uptake assay for irritants as an alternative to the rabbit (Draize) test. Food Chem. Toxicol., 24, 473-475. https://doi.org/10.1016/0278-6915(86)90096-7
  82. Jirova, D., Kejlova, K., Brabec, M., Bendova, H. and Kolarova, H. (2003) The benefits of the 3T3 NRU test in the safety assessment of cosmetics: long-term experience from pre-marketing testing in the Czech Republic. Toxicol. In Vitro, 17, 791-796. https://doi.org/10.1016/S0887-2333(03)00125-5
  83. Benavides, T., Martínez, V., Mitjans, M., Infante, M.R., Moran, C., Clapés, P., Clothier, R. and Vinardell, M.P. (2004) Assessment of the potential irritation and photoirritation of novel amino acid-based surfactants by in vitro methods as alternative to the animal tests. Toxicology, 201, 87-93. https://doi.org/10.1016/j.tox.2004.04.003
  84. OECD (2014) Test No. 435: In Vitro Membrane Barrier Test Method for Skin Corrosion (OECD Ed.). OECD Publishing, Paris.
  85. OECD (2013) Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method. OECD guidelines for the testing of chemicals (OECD Ed.). OECD Publishing, Paris.
  86. Jung, K.M., Lee, S.H., Jang, W.H., Jung, H.S., Heo, Y., Park, Y.H., Bae, S., Lim, K.M. and Seok, S.H. (2014) KeraSkin-VM: a novel reconstructed human epidermis model for skin irritation tests. Toxicol. In Vitro, 28, 742-750. https://doi.org/10.1016/j.tiv.2014.02.014
  87. Welss, T., Basketter, D.A. and Schröder, K.R. (2004) In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol. In Vitro, 18, 231-243. https://doi.org/10.1016/j.tiv.2003.09.009
  88. Spielmann, H., Hoffmann, S., Liebsch, M., Botham, P., Fentem, J.H., Eskes, C., Roguet, R., Cotovio, J., Cole, T., Worth, A., Heylings, J., Jones, P., Robles, C., Kandárová, H., Gamer, A., Remmele, M., Curren, R., Raabe, H., Cockshott, A., Gerner, I. and Zuang, V. (2007) The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the skin integrity function test. Altern. Lab. Anim., 35, 559-601.
  89. OECD (2013) Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method, OECD Publishing.
  90. Tinois, E., Gaetani, Q., Gayraud, B., Dupont, D., Rougier, A. and Pouradier, D.X. (1994) The Episkin model: Successful reconstruction of human epidermis in vitro in In Vitro Skin Toxicology. Mary Ann Liebert, New York, pp. 133-140.
  91. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  92. Faller, C., Bracher, M., Dami, N. and Roguet, R. (2002) Predictive ability of reconstructed human epidermis equivalents for the assessment of skin irritation of cosmetics. Toxicol. In Vitro, 16, 557-572. https://doi.org/10.1016/S0887-2333(02)00053-X
  93. Faller, C. and Bracher, M. (2002) Reconstructed skin kits: reproducibility of cutaneous irritancy testing. Skin Pharmacol. Appl. Skin Physiol., 15 Suppl 1, 74-91. https://doi.org/10.1159/000066678
  94. Rosdy, M. and Clauss, L.C. (1990) Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. J. Invest. Dermatol., 95, 409-414. https://doi.org/10.1111/1523-1747.ep12555510
  95. de Brugerolle de Fraissinette, A., Picarles, V., Chibout, S., Kolopp, M., Medina, J., Burtin, P., Ebelin, M.E., Osborne, S., Mayer, F.K., Spake, A., Rosdy, M., De Wever, B., Ettlin, R.A. and Cordier, A. (1999) Predictivity of an in vitro model for acute and chronic skin irritation (SkinEthic) applied to the testing of topical vehicles. Cell Biol. Toxicol., 15, 121-135. https://doi.org/10.1023/A:1007577515215
  96. Tornier, C., Rosdy, M. and Maibach, H.I. (2006) In vitro skin irritation testing on reconstituted human epidermis: reproducibility for 50 chemicals tested with two protocols. Toxicol. In Vitro, 20, 401-416. https://doi.org/10.1016/j.tiv.2005.09.004
  97. Kandarova, H., Liebsch, M., Schmidt, E., Genschow, E, Traue, D., Spielmann, H., Meyer, K., Steinhoff, C., Tornier, C., De Wever, B. and Rosdy, M. (2006) Assessment of the skin irritation potential of chemicals by using the SkinEthic reconstructed human epidermal model and the common skin irritation protocol evaluated in the ECVAM skin irritation validation study. Altern. Lab. Anim., 34, 393-406.
  98. De Wever, B. and Charbonniers, V. (2002) Using tissue engineered skin to evaluate the irritation potential of skin care products. Cosmet. Toilet., 117, 28-38.
  99. Green, H. (1978) Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell, 15, 801-811. https://doi.org/10.1016/0092-8674(78)90265-9
  100. Rheinwald, J. and Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes in defined clonal and serum-free culture. J. Invest. Dermatol., 6, 331-342.
  101. Kojima, H., Katoh, M., Shinoda, S., Hagiwara, S., Suzuki, T., Izumi, R., Yamaguchi, Y., Nakamura, M., Kasahawa, T. and Shibai, A. (2014) A catch-up validation study of an in vitro skin irritation test method using reconstructed human epidermis LabCyte EPI-MODEL24. J. Appl. Toxicol., 34, 766-774. https://doi.org/10.1002/jat.2937
  102. Davila, J.C., Rodriguez, R.J., Melchert, R.B. and Acosta, D., Jr. (1998) Predictive value of in vitro model systems in toxicology. Annu. Rev. Pharmacol. Toxicol., 38, 63-96. https://doi.org/10.1146/annurev.pharmtox.38.1.63
  103. Wilson, S.E., Liu, J.J. and Mohan, R.R. (1999) Stromal-epithelial interactions in the cornea. Prog. Retin. Eye Res., 18, 293-309. https://doi.org/10.1016/S1350-9462(98)00017-2
  104. Wilson, S.L., Yang, Y. and El Haj, A.J. (2014) Corneal stromal cell plasticity: in vitro regulation of cell phenotype through cell-cell interactions in a three-dimensional model. Tissue Eng Part A, 20, 225-238. https://doi.org/10.1089/ten.tea.2013.0167
  105. Meloni, M., Pauly, A., De Servi, B., Le Varlet, B. and Baudouin, C. (2010) Occludin gene expression as an early in vitro sign for mild eye irritation assessment. Toxicol. In Vitro, 24, 276-285. https://doi.org/10.1016/j.tiv.2009.08.016
  106. Choi, S., Lee, M., Lee, S.H., Jung, H.S., Kim, S.Y., Chung, T.Y., Choe, T.B., Chun, Y.J. and Lim, K.M. (2015) Identification of cornifelin and early growth response-1 gene as novel biomarkers for in vitro eye irritation using a 3D reconstructed human cornea model MCTT HCETM. Arch. Toxicol., 89, 1589-1598. https://doi.org/10.1007/s00204-014-1390-8
  107. Michibata, H., Chiba, H., Wakimoto, K., Seishima, M., Kawasaki, S., Okubo, K., Mitsui, H., Torii, H. and Imai, Y. (2004) Identification and characterization of a novel component of the cornified envelope, cornifelin. Biochem. Biophys. Res. Commun., 318, 803-813. https://doi.org/10.1016/j.bbrc.2004.04.109
  108. McCarthy, K.M., Skare, I.B., Stankewich, M.C., Furuse, M., Tsukita, S., Rogers, R.A., Lynch, R.D. and Schneeberger, E.E. (1996) Occludin is a functional component of the tight junction. J. Cell Sci., 109, 2287-2298.
  109. Matter, K. and Balda, M.S. (2007) Epithelial tight junctions, gene expression and nucleo-junctional interplay. J. Cell Sci., 120, 1505-1511. https://doi.org/10.1242/jcs.005975
  110. Ajani, G., Sato, N., Mack, J.A. and Maytin, E.V. (2007) Cellular responses to disruption of the permeability barrier in a three-dimensional organotypic epidermal model. Exp. Cell Res., 313, 3005-3015. https://doi.org/10.1016/j.yexcr.2007.04.021
  111. Pauly, A., Meloni, M., Brignole-Baudouin, F., Warnet, J.M. and Baudouin, C. (2009) Multiple endpoint analysis of the 3D-reconstituted corneal epithelium after treatment with benzalkonium chloride: early detection of toxic damage. Invest. Ophthalmol. Vis. Sci., 50, 1644-1652. https://doi.org/10.1167/iovs.08-2992
  112. Gay, R., Swiderek, M., Nelson, D. and Ernesti, A. (1992) The living skin equivalent as a model in vitro for ranking the toxic potential of dermal irritants. Toxicol. In Vitro, 6, 303-315. https://doi.org/10.1016/0887-2333(92)90020-R
  113. Triglia, D., Sherard Braa, S., Yonan, C. and Naughton, G.K. (1991) Cytotoxicity testing using neutral red and MTT assays on a three-dimensional human skin substrate. Toxicol. In Vitro, 5, 573-578. https://doi.org/10.1016/0887-2333(91)90096-V
  114. Osborne, R. and Perkins, M. (1994) An approach for development of alternative test methods based on mechanisms of skin irritation. Food Chem. Toxicol., 32, 133-142. https://doi.org/10.1016/0278-6915(94)90174-0
  115. Fentem, J.H., Briggs, D., Chesne, C., Elliott, G.R., Harbell, J.W., Heylings, J.R., Portes, P., Roguet, R., van de Sandt, J.J. and Botham, P.A. (2001) A prevalidation study on in vitro tests for acute skin irritation: results and evaluation by the Management Team. Toxicol. In Vitro, 15, 57-93. https://doi.org/10.1016/S0887-2333(01)00002-9
  116. Coquette, A., Berna, N., Poumay, Y. and Pittelkow, M. (2000) The keratinocyte in cutaneous irritation and sensitization in Biochemical Modulation of Skin Reaction. CRC Press, New York, pp. 125-143.
  117. Sims, J.E., Gayle, M.A., Slack, J.L., Alderson, M.R., Bird, T.A., Giri, J.G., Colotta, F., Re, F., Mantovani, A. and Shanebeck, K. (1993) Interleukin 1 signaling occurs exclusively via the type I receptor. Proc. Natl. Acad. Sci. U.S.A., 90, 6155-6159. https://doi.org/10.1073/pnas.90.13.6155
  118. Stylianou, E., O'Neill, L., Rawlinson, L., Edbrooke, M., Woo, P. and Saklatvala, J. (1992) Interleukin 1 induces NF-${\kappa}B$ through its type I but not its type II receptor in lymphocytes. J. Biol. Chem., 267, 15836-15841.
  119. O'Neill, L.A. and Greene, C. (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J. Leukoc. Biol., 63, 650-657. https://doi.org/10.1002/jlb.63.6.650
  120. Morales, J., Homey, B., Vicari, A.P., Hudak, S., Oldham, E., Hedrick, J., Orozco, R., Copeland, N.G., Jenkins, N.A., McEvoy, L.M. and Zlotnik, A. (1999) CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl. Acad. Sci. U.S.A., 96, 14470-14475. https://doi.org/10.1073/pnas.96.25.14470
  121. Homey, B., Alenius, H., Müller, A., Soto, H., Bowman, E.P., Yuan, W., McEvoy, L., Lauerma, A.I., Assmann, T., Bünemann, E., Lehto, M., Wolff, H., Yen, D., Marxhausen, H., To, W., Sedgwick, J., Ruzicka, T., Lehmann, P. and Zlotnik, A. (2002) CCL27-CCR10 interactions regulate T cellmediated skin inflammation. Nat. Med., 8, 157-165. https://doi.org/10.1038/nm0202-157
  122. Schalkwijk, J., Van Vlijmen, I., Alkemade, J. and De Jongh, G. (1993) Immunohistochemical localization of SKALP/elafin in psoriatic epidermis. J. Invest. Dermatol., 100, 390-393. https://doi.org/10.1111/1523-1747.ep12471990
  123. van Bergen, B.H., Andriessen, M.P., Spruijt, K.I., van de Kerkhof, P.C. and Schalkwijk, J. (1996) Expression of SKALP/ elafin during wound healing in human skin. Arch. Dermatol. Res., 288, 458-462. https://doi.org/10.1007/BF02505235
  124. Boelsma, E., Gibbs, S. and Ponec, M. (1998) Expression of skin-derived antileukoproteinase (SKALP) in reconstructed human epidermis and its value as a marker for skin irritation. Acta Derm. Venereol., 78, 107-113. https://doi.org/10.1080/000155598433421
  125. Tanaka, N., Fujioka, A., Tajima, S., Ishibashi, A. and Hirose, S. (2000) Elafin is induced in epidermis in skin disorders with dermal neutrophilic infiltration: interleukin-1${\beta}$ and tumour necrosis factor-${\alpha}$ stimulate its secretion in vitro. Br. J. Dermatol., 143, 728-732. https://doi.org/10.1046/j.1365-2133.2000.03766.x
  126. Abts, H.F., Welss, T., Mirmohammadsadegh, A., Kohrer, K., Michel, G. and Ruzicka, T. (1999) Cloning and characterization of hurpin (protease inhibitor 13): a new skin-specific, UV-repressible serine proteinase inhibitor of the ovalbumin serpin family. J. Mol. Biol., 293, 29-39. https://doi.org/10.1006/jmbi.1999.3159
  127. Welss, T., Sun, J., Irving, J.A., Blum, R., Smith, A.I., Whisstock, J.C., Pike, R.N., Von Mikecz, A., Ruzicka, T., Bird, P.I. and Abts, H.F. (2003) Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet- induced apoptosis. Biochemistry, 42, 7381-7389. https://doi.org/10.1021/bi027307q

Cited by

  1. PAL-12, a new anti-aging hexa-peptoid, inhibits UVB-induced photoaging in human dermal fibroblasts and 3D reconstructed human full skin model, Keraskin-FT™ vol.309, pp.9, 2017, https://doi.org/10.1007/s00403-017-1768-6
  2. Skin toxicology and 3Rs-Current challenges for public health protection vol.27, pp.5, 2018, https://doi.org/10.1111/exd.13536
  3. Non-cancer, cancer, and dermal sensitization risk assessment of heavy metals in cosmetics vol.81, pp.11, 2018, https://doi.org/10.1080/15287394.2018.1451191