이차원 층상구조 화합물 소재의 반도체/금속 전도 물성 제어

  • 이기문 (국립군산대학교 물리학과) ;
  • 김상일 (서울시립대학교 신소재공학과) ;
  • 이규형 (강원대학교 나노응용공학과)
  • Published : 2017.06.30

Abstract

Keywords

References

  1. J. H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge Univ. Press (1993).
  2. H. L. Stomer, R. Dingle, A. C. Gossard, W. Wiegmann, and M. D. Struge, Two-dimensional electron gas at a semiconductor-semiconductor interface, Solid State Commun. 29, 705 (1979). https://doi.org/10.1016/0038-1098(79)91010-X
  3. A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the $LaAlO_3/SrTiO_3$ heterointerface, Nature, 427, 324 (2004).
  4. J. Mannhart and D. G. Schlom, Oxide interfaces - An opportunity for electronics, Science, 327, 1607 (2010). https://doi.org/10.1126/science.1181862
  5. K. S. Novoslov et al. Electric field effect in atomically thin carbon films, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  6. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  7. M. Xu, T. Liang, M. Shi, and H. Chen, Graphenelike two-dimensional materials, Chem. Rev. 113, 3766 (2013). https://doi.org/10.1021/cr300263a
  8. M. Chhowalla et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature Chem. 5, 263 (2013). https://doi.org/10.1038/nchem.1589
  9. Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nature Nanotechnol. 7, 699 (2012). https://doi.org/10.1038/nnano.2012.193
  10. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer $MoS_2$ transistors, Nature Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  11. J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides discussion and interpretation of optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).
  12. S. O. Kasap, Principles of Electronic Materials and Devices 2nd ed. McGraw Hill (2002).
  13. R. C. Jaeger, Introduction to Microelectronic Fabrication 2nd ed. Prentice Hall (2002).
  14. R. S. Muller, T. I. Kamins, and M. Chan, Device Electronics for Integrated Circuits 3rd ed. Wiley (2003).
  15. L. Solymar and D. Walsh, Electrical Properties of Materials 6th ed., Oxford Univ. Press (1998)
  16. B. Radisavljevic and A. Kis, Mobility engineering and a metal-insulator transition in monolayer $MoS_2$, Nature Mater. 12, 815 (2013). https://doi.org/10.1038/nmat3687
  17. E. Revolinsky and D. Beerntsen, Electrical properties of the $MoTe_2-WTe_2$ and $MoSe_2-WSe_2$ systems. J. Appl. Phys. 35, 2086 (1964). https://doi.org/10.1063/1.1702795
  18. D. H. Keum et al. Bandgap opening in few-layered monoclinic $MoTe_2$, Nature Phys. 11, 482 (2015). https://doi.org/10.1038/nphys3314
  19. S. Cho et al. Phase patterning for ohmic homojunction contact in $MoTe_2$, Science, 349, 625 (2015). https://doi.org/10.1126/science.aab3175
  20. Y. Cui, X. Duan, J. Hu, and C. M. Lieber, Doping and electrical transport in silicon nanowires, J. Phys. Chem. B, 104, 5213 (2000).
  21. S. I. Kim et al. Metallic conduction induced by direct anion site doping in layered $SnSe_2$, Sci. Rep. 6, 19733 (2016). https://doi.org/10.1038/srep19733