DOI QR코드

DOI QR Code

Research Trends in Photothermal Therapy Using Gold Nanoparticles

금 나노입자를 이용한 광열치료 연구 동향

  • Kim, Bong-Geun (Department of Chemical Engineering, Myongji University) ;
  • Yeo, Do Gyeong (Department of Chemical Engineering, Myongji University) ;
  • Na, Hyon Bin (Department of Chemical Engineering, Myongji University)
  • Received : 2017.05.02
  • Accepted : 2017.07.05
  • Published : 2017.08.10

Abstract

The photothermal therapy is a method of cell ablation using the heat converted from the incident light by photothermal transducers. It offers a selective treatment to desired abnormal cells, in particular, tumor tissues. Among various photothermal agents, gold nanoparticles (Au NPs) have received enormous attention due to their unique physicochemical property over last two decades. In this review, we address research strategies and methods to improve treatment efficacy by organizing recent research works. We mainly focus on research works to enhance light-to-heat conversion via optimizing the morphology of Au NPs and related assemblies as well as the strategies to deliver Au NPs efficiently to specific targets. We also introduce convergence research efforts to combine Au NP-mediated photothermal treatment and other functions such as diagnostic capabilities and other therapeutic methods.

광열치료는 빛을 받아 열로 변환하는 광열특성을 가진 광열변환기를 통해 세포의 병변, 특히 암세포를 선택적으로 사멸시키는 치료법이다. 광열특성을 가지는 다양한 물질들이 광열치료에 적용되어왔지만, 그중에서도 금 나노입자는 그 고유한 물리화학적 특성으로 지난 20년 가까이 과학자와 의료인들에게 큰 관심을 받아왔다. 본 총설에서는 금 나노입자를 사용하여 광열치료효과를 향상시키기 위한 전략들을 최근의 광열치료 연구를 중심으로 정리하여 서술하였다. 특히, 광열변환기로서 사용되는 다양한 금 나노입자 구조체의 합성 및 광학 성질 제어를 통해 광열변환 효율 향상을 시도한 연구들과 금 나노입자를 병소에 효과적으로 축적시키기 위한 선별적 전달 방법들을 논의하였으며, 마지막에는 근래에 적극적으로 시도되고 있는 다른 치료법 및 진단기술과의 융합 연구들을 소개했다.

Keywords

References

  1. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549-13554 (2003). https://doi.org/10.1073/pnas.2232479100
  2. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends Biotechnol., 24, 62-67 (2006). https://doi.org/10.1016/j.tibtech.2005.12.004
  3. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269, 57-66 (2008). https://doi.org/10.1016/j.canlet.2008.04.026
  4. J. S. Choi and S. Y. Kim, Synthesis and characterization of photosensitizer-conjugated gold nanorods for photodynamic/photothermal therapy, Appl. Chem. Eng., 27, 599-605 (2016). https://doi.org/10.14478/ace.2016.1089
  5. T. Sugiura, D. Matsuki, J. Okajima, A. Komiya, S. Mori, S. Maruyama, and, T. Kodama, Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling, Nano Res., 8, 3842-3852 (2015). https://doi.org/10.1007/s12274-015-0884-x
  6. G. v. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res., 69, 3892-3900 (2009). https://doi.org/10.1158/0008-5472.CAN-08-4242
  7. B. Jang, Y. S. Kim, and Y. Choi, Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation, Small, 7, 265-270 (2011). https://doi.org/10.1002/smll.201001532
  8. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles, Photochem. Photobiol., 82, 412-417 (2006). https://doi.org/10.1562/2005-12-14-RA-754
  9. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 41, 1578-1586 (2008). https://doi.org/10.1021/ar7002804
  10. S. Kommareddy, S. B. Tiwari, and M. M. Amiji, Long-circulating polymeric nanovectors for tumor-selective gene delivery, Technol. Cancer Res. Treat., 4, 615-625 (2005). https://doi.org/10.1177/153303460500400605
  11. W. Cai, T. Gao, H. Hong, and J. Sun, Applications of gold nanoparticles in cancer nanotechnology, Nanotechnol. Sci. Appl., 1, 17-32 (2008). https://doi.org/10.2147/NSA.S3788
  12. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan, Mediating tumor targeting efficiency of nanoparticles through design, Nano Lett., 9, 1909-1915 (2009). https://doi.org/10.1021/nl900031y
  13. A. S. Thakor and S. S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy, CA Cancer J. Clin., 63, 395-418 (2013). https://doi.org/10.3322/caac.21199
  14. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426 (1999). https://doi.org/10.1021/jp9917648
  15. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence, J. Phys. Chem. A, 103, 1165-1170 (1999). https://doi.org/10.1021/jp983141k
  16. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115-2120 (2006). https://doi.org/10.1021/ja057254a
  17. C. Iancu, Photothermal therapy of human cancers (PTT) using gold nanoparticles, Biotechnol. Mol. Biol. Nanomed., 1, 53-60 (2013).
  18. A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol. Pharm., 10, 831-847 (2013). https://doi.org/10.1021/mp3005885
  19. A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J. Nanopart. Res., 12, 2313-2333 (2010). https://doi.org/10.1007/s11051-010-9911-8
  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 23, 217-228 (2007).
  21. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, A new era for cancer treatment: gold nanoparticle-mediated thermal therapies, Small, 7, 169-183 (2011). https://doi.org/10.1002/smll.201000134
  22. R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316-317 (2001). https://doi.org/10.1038/86684
  23. A. C. Anselmo and S. Mitragotri, Nanoparticles in the clinic, Bioeng. Transl. Med., 1, 10-29 (2016).
  24. E. Buytaert, M. Dewaele, and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Bioeng. Transl. Med., 1776, 86-107 (2007).
  25. P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, Cell death pathways in photodynamic therapy of cancer, Cancers, 3, 2516-2539 (2011). https://doi.org/10.3390/cancers3022516
  26. R. D. Bonfil, O. D. Bustuoabad, R. A. Ruggiero, R. P. Meiss, and C. D. Pasqualini, Tumor necrosis can facilitate the appearance of metastases, Clin. Exp. Metastasis, 6, 121-129 (1988). https://doi.org/10.1007/BF01784843
  27. Y. Wu and B. P. Zhou, Inflammation: a driving force speeds cancer metastasis, Cell Cycle, 8, 3267-3273 (2009). https://doi.org/10.4161/cc.8.20.9699
  28. K. F. Chu and D. E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nat. Rev. Cancer., 14, 199-208 (2014). https://doi.org/10.1038/nrc3672
  29. M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer, J. Photochem. Photobiol., B, 170, 58-64 (2017). https://doi.org/10.1016/j.jphotobiol.2017.03.025
  30. M. Aioub and M. A. El-Sayed, A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles, J. Am. Chem. Soc., 138, 1258-1264 (2016). https://doi.org/10.1021/jacs.5b10997
  31. A. M. Gamal-Eldeen, D. Moustafa, S. M. El-Daly, E. A. El-Hussieny, S. Saleh, M. Khoobchandani, K. L. Bacon, S. Gupta, K. Katti, R. Shukla, and K. V. Katti, Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice, J. Photochem. Photobiol. B, 163, 47-56 (2016). https://doi.org/10.1016/j.jphotobiol.2016.08.009
  32. M. R. K. Ali, Y. Wu, T. Han, X. Zang, H. Xiao, Y. Tang, R. Wu, F. M. Fernandez, and M. A. El-Sayed, Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy, J. Am. Chem. Soc., 138, 15434-15442 (2016). https://doi.org/10.1021/jacs.6b08787
  33. S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, I. Pal, A. Parekh, R. Patra, D. Dhara, P. K. Dutta, and M. Mandal, Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy, Biochim. Biophys. Acta, 1861, 3039-3052 (2017). https://doi.org/10.1016/j.bbagen.2016.10.004
  34. A. Murshid, J. Gong, M. A. Stevenson, and S. K. Calderwood, Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come, Expert Rev. Vaccines, 10, 1553-1568 (2011). https://doi.org/10.1586/erv.11.124
  35. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084-1094 (2006). https://doi.org/10.1039/b517615h
  36. X. Huang and M. A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13-28 (2010). https://doi.org/10.1016/j.jare.2010.02.002
  37. S. Paterson, S. A. Thompson, J. Gracie, A. W. Wark, and R. de la Rica, Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy, Chem. Sci., 7, 6232-6237 (2016). https://doi.org/10.1039/C6SC02465C
  38. Y. Xia, X. Wu, J. Zhao, J. Zhao, Z. Li, W. Ren, Y. Tian, A. Li, Z. Shen, and A. Wu, Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer, Nanoscale, 8, 18682-18692 (2016). https://doi.org/10.1039/C6NR07172D
  39. C. Iodice, A. Cervadoro, A. Palange, J. Key, S. Aryal, M. R. Ramirez, C. Mattu, G. Ciardelli, B. E. O'Neill, and P. Decuzzi, Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs, Opt. Lasers Eng., 76, 74-81 (2016). https://doi.org/10.1016/j.optlaseng.2015.04.017
  40. X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi, and M. Gao, Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo, Adv. Mater., 29, 1604894 (2017). https://doi.org/10.1002/adma.201604894
  41. Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z.-Y. Li, L. V. Wang, Y. Liu, and Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, AS Nano, 7, 2068-2077 (2013). https://doi.org/10.1021/nn304332s
  42. ClinicalTrials.gov, Pilot study of AuroLase (tm) therapy in refractory and/or recurrent tumors of the head and neck, U.S., National Institute of Health. http://clinicaltrials.gov/ct2/show/NCT 00848042 (2016).
  43. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B, 110, 7238-7248 (2006). https://doi.org/10.1021/jp057170o
  44. N. R. Jana, Gram-Scale Synthesis of Soluble, Near-monodisperse gold nanorods and other anisotropic nanoparticles, Small, 1, 875-882 (2005). https://doi.org/10.1002/smll.200500014
  45. X. Huang, S. Neretina, and M. A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater., 21, 4880-4910 (2009). https://doi.org/10.1002/adma.200802789
  46. K. A. Kozek, K. M. Kozek, W. C. Wu, S. R. Mishra, and J. B. Tracy, Large-scale synthesis of gold nanorods through continuous secondary growth, Chem. Mater., 25, 4537-4544 (2013). https://doi.org/10.1021/cm402277y
  47. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc., 2, 2182-2190 (2007). https://doi.org/10.1038/nprot.2007.326
  48. Z. Li, H. Huang, S. Tang; Y. Li, X. F. Yu; H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy, Biomaterials, 74, 144-154 (2016). https://doi.org/10.1016/j.biomaterials.2015.09.038
  49. S. C. Gad, K. L. Sharp, C. Montgomery, J. D. Payne, and G. P. Goodrich, Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells), Int. J. Toxicol., 31, 584-594 (2012). https://doi.org/10.1177/1091581812465969
  50. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33-40 (2004). https://doi.org/10.1177/153303460400300104
  51. S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, Nanoshell particles: synthesis, properties and applications, Curr. Sci., 91, 1038-1052 (2006).
  52. M. R. Rasch, K. V. Sokolov, and B. A. Korgel, Limitations on the optical tunability of small diameter gold nanoshells, Langmuir, 25, 11777-11785 (2009). https://doi.org/10.1021/la901249j
  53. J. Zhang, J. Li, N. Kawazoe, and G. Chen, Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy, J. Mater. Chem. B, 5, 245-253 (2017). https://doi.org/10.1039/C6TB02872A
  54. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology, 23, 075102 (2012). https://doi.org/10.1088/0957-4484/23/7/075102
  55. B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater., 15, 1957-1962 (2003). https://doi.org/10.1021/cm020732l
  56. M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis, Int. J. Nanomed., 11, 4849-4863 (2016). https://doi.org/10.2147/IJN.S109470
  57. Y. Liu, J. R. Ashton, E. J. Moding, H. Yuan, J. K. Register, A. M. Fales, J. Choi, M. J. Whitley, X. Zhao, Y. Qi, Y. Ma, G. Vaidyanathan, M. R. Zalutsky, D. G. Kirsch, C. T. Badea, and T. Vo-Dinh, A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy, Theranostics, 5, 946-960 (2015). https://doi.org/10.7150/thno.11974
  58. P. Qiu, M. Yang, X. Qu, Y. Huai, Y. Zhu, and C. Mao, Tuning photothermal properties of gold nanodendrites for in vivo cancer therapy within a wide near infrared range by simply controlling their degree of branching, Biomaterials, 104, 138-144 (2016). https://doi.org/10.1016/j.biomaterials.2016.06.033
  59. B. Sun, J. Wu, S. Cui, H. Zhu, W. An, Q. Fu, C. Shao, A. Yao, B. Chen, and D. Shi, In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy, Nano Res., 10, 37-48 (2017). https://doi.org/10.1007/s12274-016-1264-x
  60. A. Hatef, S. Fortin-Deschenes, E. Boulais, F. Lesage, and M. Meunier, Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse, Int. J. Heat Mass Trans., 89, 866-871 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.071
  61. L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells, Int. J. Heat Mass Trans., 54, 5459-5469 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.045
  62. Y. Ren, H. Qi, Q. Chen, and L. Ruan, Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy, Int. J. Heat Mass Trans., 106, 212-221 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.067
  63. M. Borzenkov, A. Maattanen, P. Ihalainen, M. Collini, E. Cabrini, G. Dacarro, P. Pallavicini, and G. Chirico, Fabrication of inkjet-printed gold nanostar patterns with photothermal properties on paper substrate, ACS Appl. Mater. Interfaces, 8, 9909-9916 (2016). https://doi.org/10.1021/acsami.6b02983
  64. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev., 60, 1307-1315 (2008). https://doi.org/10.1016/j.addr.2008.03.016
  65. X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, and S. Nie, A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands, ACS Nano, 4, 5887-5896 (2010). https://doi.org/10.1021/nn102055s
  66. L. Brannon-Peppas and J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev., 56, 1649-1659 (2004). https://doi.org/10.1016/j.addr.2004.02.014
  67. R. Kunert and D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451-3461 (2016). https://doi.org/10.1007/s00253-016-7388-9
  68. J. Sudimack and R. J. Lee, Targeted drug delivery via the folate receptor, Adv. Drug Deliv. Rev., 41, 147-162 (2000). https://doi.org/10.1016/S0169-409X(99)00062-9
  69. W. Chen, S. G. Allen, A. K. Reka, W. Qian, S. Han, J. Zhao, L. Bao, V. G. Keshamouni, S. D. Merajver, and J. Fu, Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics, BMC Cancer, 16, 614 (2016). https://doi.org/10.1186/s12885-016-2638-x
  70. T. W. Huang, S. H. Tseng, C. C. Lin, C. H. Bai, C. S. Chen, C. S. Hung, C. H. Wu, and K. W. Tam, Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials, World J. Surg. Oncol., 11, 15 (2013). https://doi.org/10.1186/1477-7819-11-15
  71. M. Neshatian, S. Chung, D. Yohan, C. Yang, and D. B. Chithrani, Determining the size dependence of colloidal gold nanoparticle uptake in a tumor-like interface (hypoxic), Colloids Interface Sci. Commun., 1, 57-61 (2014). https://doi.org/10.1016/j.colcom.2014.07.004
  72. M. Yang, Y. Liu, W. Hou, X. Zhi, C. Zhang, X. Jiang, F. Pan, Y. Yang, J. Ni, and D. Cui, Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer, Nanoscale, 9, 334-340 (2017). https://doi.org/10.1039/C6NR06851K
  73. S. Wang, Z. Teng, P. Huang, D. Liu, Y. Liu, Y. Tian, J. Sun, Y. Li, H. Ju, X. Chen, and G. Lu, Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars, Small, 11, 1801-1810 (2015). https://doi.org/10.1002/smll.201403248
  74. Y. Du, Q. Jiang, N. Beziere, L. Song, Q. Zhang, D. Peng, C. Chi, X. Yang, H. Guo, G. Diot, V. Ntziachristos, B. Ding, and J. Tian, DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy, Adv. Mater., 28, 10000-10007 (2016). https://doi.org/10.1002/adma.201601710
  75. S. Kang, S. H. Bhang, S. Hwang, J. K. Yoon, J. Song, H.-K. Jang, S. Kim, and B.-S. Kim, Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy, ACS Nano, 9, 9678-9690 (2015). https://doi.org/10.1021/acsnano.5b02207
  76. Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li, C. Zhang, F. Pan, K. Wang, Y. Yang, J. Martinez de la Fuentea, and D. Cui, Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy, ACS Nano, 10, 2375-2385 (2016). https://doi.org/10.1021/acsnano.5b07172
  77. N. Zhang, X. Xu, X. Zhang, D. Qu, L. Xue, R. Mo, and C. Zhang, Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy, Int. J. Pharm., 497, 210-221 (2016). https://doi.org/10.1016/j.ijpharm.2015.11.032
  78. M. Singh, D. C. C. Harris-Birtill, Y. Zhou, M. E. Gallina, A. E. G. Cass, G. B. Hanna, and D. S. Elson, Application of gold nanorods for photothermal therapy in ex vivo human oesophagogastric adenocarcinoma, J. Biomed. Nanotechnol., 12, 481-490 (2016). https://doi.org/10.1166/jbn.2016.2196
  79. S. I. Hussein, A. S. Sultan, and N. Y. Yaseen, Gold nanoparticles for photothermal therapy of cancerous cells in vitro, Int. J. Curr. Microbiol. Appl. Sci., 5, 261-266 (2016).
  80. X. Kang, X. Guo, X. Niu, W. An, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, and Q. Zhag, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer, Sci. Rep., 7, 42069 (2017). https://doi.org/10.1038/srep42069
  81. M. Yu, F. Guo, J. Wang, F. Tan, and N. Li, Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy, ACS Appl. Mater. Interfaces, 7, 17592-17597 (2015). https://doi.org/10.1021/acsami.5b05763
  82. E. L. L. Yeo, J. U. J. Cheah, D. J. H. Neo, W. I. Goh, P. Kanchanawong, K. C. Soo, P. S. P. Thong, and J. C. Y. Kah, Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy, J. Mater. Chem. B, 5, 254-268 (2017). https://doi.org/10.1039/C6TB02743A
  83. M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy, ACS Nano, 11, 579-586 (2017). https://doi.org/10.1021/acsnano.6b06651
  84. Y. C. Ou, J. A. Webb, S. Faley, D. Shae, E. M. Talbert, S. Lin, C. C. Cutright, J. T. Wilson, L. M. Bellan, and R. Bardhan, Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer, ACS Omega, 1, 234-243 (2016). https://doi.org/10.1021/acsomega.6b00079
  85. M. R. K. Ali, H. R. Ali, C. R. Rankin, M. A. El-Sayed, Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy, Biomaterials, 102, 1-8 (2016). https://doi.org/10.1016/j.biomaterials.2016.06.017
  86. B. K. Jung, Y. K. Lee, J. Hong, H. Ghandehari, and C. O. Yun, Mild hyperthermia Induced by gold nanorod-mediated plasmonic photothermal therapy enhances transduction and replication of oncolytic adenoviral gene delivery, ACS Nano, 10, 10533-10543 (2016). https://doi.org/10.1021/acsnano.6b06530
  87. B. K. Wang, X. F. Yu, J. H. Wang, Z. B. Li, P. H. Li, H. Wang, L. Song, P. K. Chu, and C. Li, Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing, Biomaterials, 78, 27-39 (2016). https://doi.org/10.1016/j.biomaterials.2015.11.025
  88. F. Pene, E. Courtine, A. Cariou, and J. P. Mira, Toward theragnostics, Crit. Care Med., 37, S50-S58 (2009). https://doi.org/10.1097/CCM.0b013e3181921349
  89. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem., 77, 3261-3266 (2005). https://doi.org/10.1021/ac048176x
  90. D. Radziuk and H. Moehwald, Highly effective hot spots for SERS signatures of live fibroblasts, Nanoscale, 6, 6115-6126 (2014). https://doi.org/10.1039/C4NR00594E
  91. W. Li and X. Chen, Gold nanoparticles for photoacoustic imaging, Nanomedicine (Lond.), 10, 299-320 (2015). https://doi.org/10.2217/nnm.14.169
  92. T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, Two-photon luminescence properties of gold nanorods, Biomed. Opt. Express, 4, 584-595 (2013). https://doi.org/10.1364/BOE.4.000584
  93. L. Y. Bai, X. Q. Yang, J. An, L. Zhang, K. Zhao, M. Y. Qin, B. Y. Fang, C. Li, Y. Xuan, X. S. Zhang, Y. D. Zhao, and Z. Y. Ma, Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy, Nanotechnology, 26, 315701 (2015). https://doi.org/10.1088/0957-4484/26/31/315701
  94. M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer, Nanoscale, 8, 4452-4457 (2016). https://doi.org/10.1039/C6NR00056H
  95. O. Betzer, R. Ankri, M. Motiei, and R. Popovtzer, Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy, J. Nanomater., 2015, 7 (2015).
  96. Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, X. Qiao, H. Hu, Y. Liang, H. Zhu, and D. Chen, Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser, Int. J. Nanomed., 10, 4747-4761 (2015).
  97. C. Du, A. Wang, J. Fei, J. Zhao, and J. Li, Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy, J. Mater. Chem. B, 3, 4539-4545 (2015).
  98. M. Azhdarzadeh, F. Atyabi, A. A. Saei, B. S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, and R. Dinarvand, Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer, Colloids Surf., B, 143, 224-232 (2016). https://doi.org/10.1016/j.colsurfb.2016.02.058

Cited by

  1. Effect of Indocyanine Green and Infrared Diode Laser to Streptococcus mutans Biofilms vol.38, pp.10, 2020, https://doi.org/10.1089/photob.2019.4796