DOI QR코드

DOI QR Code

Reforming of Expanded Graphite for Improving Fire Resistance of Fireproof Sealant

방화용 실란트의 내화성 향상을 위한 첨가제로서 팽창흑연의 개질

  • Received : 2017.04.26
  • Accepted : 2017.05.26
  • Published : 2017.08.10

Abstract

This study was carried out to investigate the volumetric expansion ratio and hardness of expanded graphite after coating with various resins which were used as an additive of fireproof sealant. The coating thickness of the resin, which represents the coating rate, was dependent of the drying speed of the resin and the viscosity of the resin. Therefore the coating thickness was shown as follows: polyvinyl acetate > acrylic resin > urethane resin > water soluble latex. Furthermore, the volumetric expansion ratio was as follows: urethane resin > water soluble latex > acrylic resin > polyinyl acetate and the hardness was as follows: polyvinyl acetate resin > acrylic resin > water soluble latex > urethane resin. This showed that the volume of expansion was reduced by expansion, which was not covered by coating, but significantly increased by increasing hardness and allowed it to be used as a refractory addition. According to the response surface methodology, the optimized addition amount and stirring speed of acrylic resin were 37.6 wt% and 441.4 rpm, respectively.

본 연구에서는 방화용 실란트의 첨가제로 사용되는 팽창흑연의 부피팽창률과 경도특성을 개선하기 위해 팽창흑연에 다양한 수지를 코팅한 후 그 특성을 고찰하였다. 수지의 코팅률을 나타내는 평균코팅두께는 수지의 건조속도와 점도의 영향으로 초산비닐계수지 > 아크릴수지 > 우레탄수지 > 수용성라텍스의 순으로 크게 나타났다. 또한 수지의 종류에 따라 코팅된 팽창흑연의 부피팽창률은 우레탄수지 > 수용성라텍스 > 아크릴수지 > 초산비닐계수지의 순으로 컸으며, 경도는 초산비닐계수지 > 아크릴수지 > 수용성라텍스 > 우레탄수지의 순으로 증가함을 알 수 있었다. 이는 코팅처리를 하지 않은 팽창흑연에 비해 부피팽창률은 감소하나 경도가 현저하게 증가되어 방화첨가제로 사용이 가능함을 알 수 있었다. 반응표면분석법에 의한 최적화실험 결과 아크릴수지의 최적코팅 조건은 수지의 첨가량 37.6 wt%과 코팅 교반속도 441.4 rpm이었다.

Keywords

References

  1. H.-C. Chou, C.-T. Yeh, and C.-M. Shu, Fire accident investigation of an explosion caused by static electricity in a propylene plant, Process Saf. Environ. Prot., 97, 116-121 (2015). https://doi.org/10.1016/j.psep.2015.02.007
  2. S. Chettouh, R. Hamzi, and K. Benaroua, Examination of fire and related accidents in Skikda oil refinery for the period 2002-2013, J. Loss Prev. Process Ind., 41, 186-193 (2016). https://doi.org/10.1016/j.jlp.2016.03.014
  3. S. Mannan, Lees' Process Safety Essentials: Hazard Identification, Assessment and Control, Ch. 19 (Accident research and investigation), pp. 373-381, Butterworth-Heinemann, Elsevier (2014).
  4. Y. B. Li and X. W. Cao, Strategy evaluation for fire spray system on advanced passive PWR severe accident management guideline, Prog. Nucl. Energy, 85, 319-324 (2015). https://doi.org/10.1016/j.pnucene.2015.07.001
  5. Y. Shi and G. Wang, An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating, Prog. Org. Coat., 90, 83-90 (2016). https://doi.org/10.1016/j.porgcoat.2015.10.003
  6. Y. Shi and G. Wang, The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating, Appl. Surf. Sci., 385, 453-463 (2016). https://doi.org/10.1016/j.apsusc.2016.05.107
  7. Z. Wang, E. Han, and W. Ke, Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings, Corros. Sci., 49(5), 2237-2253 (2007). https://doi.org/10.1016/j.corsci.2006.10.024
  8. B. Gardelle, S. Duquesne, P. Vandereecken, S. Bellayer, and S. Bourbigot, Resistance to fire of curable silicone/expandable graphite based coating: Effect of the catalyst, Eur. Polym. J., 49(8), 2031-2041 (2013). https://doi.org/10.1016/j.eurpolymj.2013.04.021