DOI QR코드

DOI QR Code

Synthesis and Adsorption Characteristics of Guanidine-based CO2 Adsorbent

Guanidine기반 이산화탄소 건식 흡착제 합성 및 흡착 특성

  • Pacia, Rose Mardie (Department of Chemical Engineering, Kongju National University) ;
  • Pyo, Seong Won (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2017.05.24
  • Accepted : 2017.06.12
  • Published : 2017.08.10

Abstract

In this study, the guanidine compound, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was impregnated to three kinds of silica to prepare $CO_2$ adsorbents, and the $CO_2$ adsorption and physicochemical properties of the resulting adsorbents were investigated. The TBD amount of impregnation was changed and its effect on adsorption capacity and characteristics were studied. The physicochemical properties of TBD-impregnated silica were evaluated with $N_2$ adsorption/desorption, FT-IR, elemental analysis, and thermogravimetric analysis. The TBD-impregnated silica lowered the surface area and pore volume, and the increased impregnation amount of TBD made them further decrease. When TBD was 6 mmol/g, the $CO_2$ adsorption capacity was the highest at 7.3 wt%, and the adsorption capacity decreased due to the blocking phenomenon when the TBD amount increased.

본 연구에서는 guanidine화합물인 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)를 세 종류의 실리카 기공에 함침하여 $CO_2$ 흡착제를 제조하고 $CO_2$ 흡착성능과 물리화학적 특성을 조사하였다. 이때 실리카 내 TBD 함침량을 변화시켜 흡착능과 흡착제 특성도 살펴보았다. TBD를 함침시킨 담체의 물리화학적 특성은 질소 흡/탈착 실험, FT-IR, 원소분석, 열중량분석을 이용하였다. TBD를 담체에 함침시킨 전후를 비교하면 표면적과 기공의 부피, 크기가 감소하고 함침시킨 TBD 몰 수가 증가할수록 감소폭은 증가하였다. $CO_2$ 흡착능은 TBD 6 mmol/g일 때 7.3 wt%로 가장 높았으며 그 이상 TBD의 함침 몰 수가 증가하면 블로킹 현상 등으로 흡착능이 감소하였다.

Keywords

References

  1. C. H. Yu, C. H. Huang, and C. S. Tan, A review of $CO_2$ capture by absorption and adsorption, Aerosol Air Qual. Res., 12, 745-769 (2012).
  2. C. K. Yi, Advances of carbon capture technology, Korean Ind. Chem. News, 12, 30-42 (2009).
  3. B. M. Min, Status of $CO_2$ capturing technologies in post combustion, Korean Ind. Chem. News, 12, 15-29 (2009).
  4. C. K. Yi, Advances of post-combustion carbon capture technology by dry sorbent, Korean J. Chem. Eng., 48, 140-146 (2010).
  5. G. P. Knowles, S. W. Delaney, and A. L. Chaffee, Diethylenetriamine[propyl(silyl)]-functionalized (dt) mesoporous silica as $CO_2$ adsorbents, Ind. Eng. Chem. Res., 45, 2626-2633 (2006). https://doi.org/10.1021/ie050589g
  6. J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, and C. W. Joens, Designing adsorbents for $CO_2$ capture from flue gas-hyperbranched aminosilicas capable of capturing $CO_2$ reversibly, J. Am. Chem. Soc., 130, 2902-2903 (2008). https://doi.org/10.1021/ja077795v
  7. X. Yan, L. Zhang, Y Zhang, G. Yang, and Z. Yan, Amine-modified SBA-15: effect of pore structure on the performance for $CO_2$ capture, Ind. Eng. Chem. Res., 50, 3220-3226 (2011). https://doi.org/10.1021/ie101240d
  8. S. H. Liu, C. H. Wu, H. K. Lee, and S. B. Liu, Highly stable amine-modified mesoporous silica materials for efficient $CO_2$ capture, Top. Catal., 53, 210-217 (2010). https://doi.org/10.1007/s11244-009-9413-z
  9. Z. Z. Yang, L. N. He, Y. N. Zhao, B. Li, and B. Yu, $CO_2$ capture and activation by superbase/polyethylene glycol and its subsequent conversion, Energy Environ. Sci., 4, 3971-3975 (2011). https://doi.org/10.1039/c1ee02156g
  10. B. Ochiai, K. Yokota, A. Fujii, D. Nagai, and T. Endo, Reversible trap-release of $CO_2$ by polymers bearing DBU and DBN moieties, Macromolecule, 41, 1229-1236 (2008). https://doi.org/10.1021/ma702189a
  11. M. S. Kim and J. W. Park, Reversible, solid state capture of carbon dioxide by hydroxylated amidines, Chem. Commun., 46, 2507-2509 (2010). https://doi.org/10.1039/b921688j
  12. F. S. Pereira, E. R. DeAzevedo, E. F. D. Silva, T. J. Bonagamba, D. L. D. S. Agostini, A. Magalhaes, A. E. Job, and E. R. P. Gonzalez, Study of the carbon dioxide chemical fixationdactivation by guanidines, Tetrahedron, 64, 10097-10106 (2008). https://doi.org/10.1016/j.tet.2008.08.008
  13. S. Carloni, D. E. D. Vos, P. A. Jacobs, R. Maggi, G. Sartori, and R. Sartorio, Catalytic activity of MCM-41-TBD in the selective preparation of carbamate and unsymmetrical alkyl carbonates from diethyl carbonate, J. Catal., 205, 199-204 (2002). https://doi.org/10.1006/jcat.2001.3439
  14. A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori, and R. Sartorio, Cycloaddition of $CO_2$ to epoxides over both homogeneous and silica-supported guanidine catalysts, Tetrahedron Lett., 44, 2931-2934 (2003). https://doi.org/10.1016/S0040-4039(03)00424-6
  15. Y. V. S. Rao, D. E. D. Vos, and P. A. jacobs, 1,5,7-Tkiazabicyclo [4,4,0]dec-5-ene immobilized in MCM-41: a strongly basic porous catalyst, Angew. Chem. Int. Ed., 36, 2661-2663 (1997). https://doi.org/10.1002/anie.199726611
  16. S. Music, N. Filipovic-Vincekovic, and L. Sekovanic, Precipitation of amorphous $SiO_2$ particles and their properties, Braz. J. Chem. Eng., 28, 89-94 (2011). https://doi.org/10.1590/S0104-66322011000100011
  17. N. H. Khdary, A. E. Gassim, and A. G. Howard, Scavenging of benzodiazepine drugs from water using dual-functionalized silica nanoparticles, Anal. Methods, 4, 2900-2907 (2012). https://doi.org/10.1039/c2ay25297j
  18. V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, and P. Llewellyn, Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties, Microporous Mesoporous Mater., 116, 358-364 (2008). https://doi.org/10.1016/j.micromeso.2008.04.023
  19. A. Huczynski, T. Pospieszny, M. Ratajczak-Sitarz, A. Katrusiak, and B. Brzezinski, Structural and spectroscopic studies of the 1:1 complex of lasalocid acid with 1,5,7-triazabicyclo[4,4,0]dec-5-ene, J. Mol. Struct., 875, 501-508 (2008). https://doi.org/10.1016/j.molstruc.2007.05.033
  20. B. Brzezinski, G. Schroeder, V. I. Rybachenko, L. I. Kozhevina, and V. V. Kovalenko, Study of 1,5,7-triazabicyclo[4,4,0]dec-5-ene protonation by vibrational spectroscopic method, J. Mol. Struct., 516, 123-130 (2000). https://doi.org/10.1016/S0022-2860(99)00129-5
  21. D. H. Jo, K. S. Cho, C. G. Park, and S. H. Kim, Effects of inorganic-organic additives on $CO_2$ adsorption of activated carbon, Korean J. Chem. Eng., 50, 885-889 (2012). https://doi.org/10.9713/kcer.2012.50.5.885
  22. M. G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, and J. J. Pis, $CO_2$ capture by adsorption with nitrogen enriched carbon, Fuel, 86, 2204-2212 (2007). https://doi.org/10.1016/j.fuel.2007.06.001
  23. D. I. Jang, K. S. Cho, and S. J. Park, Influence of amine surface treatment on carbon dioxide adsorption behaviors of activated carbon nanotubes, Appl. Chem. Eng., 20, 658-662 (2009).
  24. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20, 14-27 (2008). https://doi.org/10.1016/S1001-0742(08)60002-9