DOI QR코드

DOI QR Code

Inhibition of Rebar Corrosion by Carbonate and Molybdate Anions

  • Tan, Y.T. (NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences (CeLS)) ;
  • Wijesinghe, S.L. (SIMTech) ;
  • Blackwood, D.J. (National University of Singapore)
  • Received : 2017.02.08
  • Accepted : 2017.08.17
  • Published : 2017.08.31

Abstract

Bicarbonate/carbonate and molybdate anions have been characterized for their inhibitive effect on pitting corrosion of carbon steel in simulated concrete pore solution by using electrochemical tests such as electrochemical impedance (EIS) and linear polarization (LP). It was revealed that bicarbonate/carbonate has a weak inhibitive effect on pitting corrosion that is approximately one order of magnitude lower compared to hydroxide. Molybdate is effective against pitting corrosion induced by the concentration of chloride as low as 113 mM and can increase the pitting potential of a previously pitted sample to the oxygen evolution potential by the concentration of molybdate as much as 14.6 mM only. The formation of a $CaMoO_4$ film on the surface hinders the reduction of dissolved oxygen on the steel surface, reducing corrosion potential and increasing the safety margin between corrosion potential and pitting potential further. In addition, pore-plugging by $FeMoO_4$ as a type of salt film within pits increases the likelihood of repassivation.

Keywords

References

  1. S. Mindess, J. F. Young, and D. Darwin, Concrete, 2nd ed., pp. 1-644, Prentice Hall PTR, USA (2003).
  2. C. L Page and M. M. Page, Durability of Concrete and Cement Composites, 1st ed., pp. 136-186, Woodhead Publishing Limited, Cambridge (2007).
  3. M. S. Vukasovich and D. R. Robitaille, J. Less Common Met., 54, 437 (1977). https://doi.org/10.1016/0022-5088(77)90066-2
  4. M. S. Vukasovich and J. P. G. Farr, Polyhedron, 5, 551 (1986). https://doi.org/10.1016/S0277-5387(00)84963-3
  5. V. S. Ramachandran, Concrete Admixtures Handbook, 2nd ed., pp. 878-938, Wiilliam Andrew, New York (1996).
  6. B. B. Hope and A. K. C. Ip, Proc. International RILEM Symposium, pp. 299-306, Chapman and Hall, UK (1990).
  7. Y. Tang, G Zhang, and Y. Zuo, Constr. Build. Mater., 28, 327 (2012). https://doi.org/10.1016/j.conbuildmat.2011.08.048
  8. M. A. G. Tommaselli, N. A. Mariano, and S. E. Kuri, Constr. Build. Mater., 23, 328 (2009). https://doi.org/10.1016/j.conbuildmat.2007.12.002
  9. S. M. Abd El Haleem, S. Abd El Wanees, E. E. Abd El Aal, and A. Diab, Corros. Sci., 52, 292 (2010). https://doi.org/10.1016/j.corsci.2009.09.004
  10. N. Azzerri, F. Mancia, and A. Tamba, Corros. Sci., 22, 675 (1982). https://doi.org/10.1016/0010-938X(82)90047-6
  11. M. G. Alvarez and J. R. Galvele, Corros. Sci., 24, 27 (1984). https://doi.org/10.1016/0010-938X(84)90133-1
  12. J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976). https://doi.org/10.1149/1.2132857
  13. G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615
  14. Y. Zhang, M. Urquidi-Macdonald, G. R. Engelhardt, and D. D. Macdonald, Electrochim. Acta, 69, 12 (2012). https://doi.org/10.1016/j.electacta.2012.01.023
  15. D. H. Davies and G. T. Burstein, Corrosion, 36, 416 (1980). https://doi.org/10.5006/0010-9312-36.8.416
  16. J. Sinko, Prog. Org. Coat., 42, 267 (2001). https://doi.org/10.1016/S0300-9440(01)00202-8