DOI QR코드

DOI QR Code

Treatment of Nickel Ions in Water Phase Using Biochar Prepared from Liriodendron tulipifera L.

백합나무 유래 biochar를 이용한 수중에서 니켈 이온의 처리

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Choi, Jung Hoon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 최정훈 (세명대학교 바이오환경공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2017.07.03
  • Accepted : 2017.07.10
  • Published : 2017.10.10

Abstract

In this work, a new type of biosorbent was prepared from the biochar of Liriodendron tulipifera L. by adding an activation process using water vapor. By using the biosorbent, the removal characteristics of nikel ions in the water phase were investigated. When the equilibrium experiments to remove both 5 and 10 mg/L of nikel ions were performed, the adsorption amount of nickel ions was 4.2 and 5.4 mg/g, respectively. Also, the optimal initial pH was 6 to increase the removal efficiency with respect to two different nickel concentrations of 5 and 10 mg/L. To enhance the removal efficiency of 10 mg/L of nikel ions, a chemical treatment using critic acid was applied for the biosorbent. In addition, 100% removal efficiency was observed for 10 mg/L of nikel ions when the experiment was conducted for 2 h using the modified biosorbent treated by 4 M of critic acid. The results of desorption experiment to recover nikel ions indicated that 0.1 M of nitrilotriacetic acid (NTA) was selected as the optimal desorption agent. Consequently, these experimental results could be employed as an economical and environmentally friendly technology for the development of nickel removal processes.

본 연구에서는 백합나무 biochar에 수증기를 사용하여 활성화 공정이 첨가된 새로운 형태의 생물흡착제를 제조하였다. 이 생물흡착제를 이용하여, 수중에서 니켈 이온의 제거 특성을 고찰하였다. 5와 10 mg/L 니켈 이온을 제거하기 위하여 흡착 평형 실험이 이루어졌을 때, 니켈 이온의 흡착량은 각각 4.2 mg/g과 5.4 mg/g을 나타내었다. 또한 두 가지 니켈농도(5, 10 mg/L)의 제거 효율을 증가시키기 위한 최적의 초기 pH가 6임을 알 수 있었다. 그리고 수중에 함유된 10 mg/L 니켈이온 제거능력을 향상시키기 위하여 생물흡착제에 구연산을 이용한 화학적 처리가 이루어졌다. 또한, 4 M 구연산으로 개질된 흡착제를 사용하여 2 h 반응시켰을 때, 10 mg/L 니켈 이온은 100% 제거 효율을 나타내었다. 그리고 니켈 이온 회수를 위한 탈착 실험한 결과, 0.1 M Nitrilotriacetic acid (NTA)가 최적의 탈착제로 선정하였다. 따라서 이러한 실험 결과들은 경제적이고 친환경적인 기술로서 니켈 처리 공정 개발에 활용될 수 있을 것이다.

Keywords

References

  1. A. Bhatnagar and A. K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids Surf. B, 76, 544-548 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.016
  2. T.-S. Shin, I.-J. Yeon, S.-W. Lee, B.-S. Lim, S.-C. Park, and K.-Y. Kim, Biosorption characteristics of cadmium by algae, J. Korean Soc. Waste Manag., 24(6), 539-545 (2007).
  3. V. K. Gupta, C. K. Jain, I. Ali, M. Sharma, and V. K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste, Water Res., 37, 4038-4044 (2003). https://doi.org/10.1016/S0043-1354(03)00292-6
  4. X. Xiao, S. Luo, G. Zeng, W. Wei, Y. Wan, L. Chen, H. Guo, Z. Cao, L. Yang, J. Chen, and Q. Xi, Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L., Bioresour. Technol., 101, 1668-1674 (2010). https://doi.org/10.1016/j.biortech.2009.09.083
  5. H.-S. Shin, C.-H. Lee, Y.-S. Lee, and K.-H. Kang, Removal of Heavy Metal from aqueous solution by a column packed with peat-humin, J. Korean Soc. Environ. Eng., 27(5), 535-541 (2005).
  6. S.-K. Park, H.-N. Kim, and Y.-K. Kim, Adsorption of Cu(II) from aqueous solutions using Pinus densiflora wood, J. Korean Soc. Water Wastewater, 21(1), 27-36 (2007).
  7. E. Demibas, M. Kobya, and S. Oncel and S. Sencan, Removal of Ni(II) from aqueous solution onto hazelnut shell activated carbon: equilibrium studies, Bioresour. Technol., 84, 291-293 (2002). https://doi.org/10.1016/S0960-8524(02)00052-4
  8. S. S. Choi, Biosorption of copper ions by recycling of Castanea crenata, Appl. Chem. Eng., 25(3), 307-311 (2014). https://doi.org/10.14478/ace.2014.1035
  9. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbent for heavy metals, Water Res., 33(11), 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
  10. K. A. Krishnan, K. G. Sreejalekshmi, and R. S. Baiju, Nickel(II) adsorption on to biomass based activated carbon obtained from sugarcane bagasse pith, Bioresour. Technol., 102, 10239-10247 (2011). https://doi.org/10.1016/j.biortech.2011.08.069
  11. T.-N. Kwon and C. Jeon, Adsorption Characteristics of sericite for nickel ions from industrial waste water, J. Ind. Eng. Chem., 19, 68-72 (2013). https://doi.org/10.1016/j.jiec.2012.07.002
  12. N. Boujelben, J. Bouzid, and Z. Elouear, Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems, J. Hazard. Mater., 163, 376-382 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.128
  13. K. Kadirvelu, K. Thamaraiselvi, and C. Namasivayam, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith, Sep. Purif. Technol., 24, 497-505 (2001). https://doi.org/10.1016/S1383-5866(01)00149-6
  14. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125, 70-85 (2015). https://doi.org/10.1016/j.chemosphere.2014.12.058
  15. W. Zheng, M. Guo, T. Chow, D. N. Bennett, and N. Rajagopalan, Sorption properties of greenwaste biochar for two triazine pesticides, J. Hazard. Mater., 181, 121-126 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.103
  16. M. Ahmad, S. S. Lee, X. Dou, D. Mohan, J.-K. Sung, J. E. Yang, and Y. S. Ok, Effects of pyrolysis temperature on soybean stoverand peanut shell derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118, 536-544 (2012). https://doi.org/10.1016/j.biortech.2012.05.042
  17. X. Xu, X. Cao, and L. Zhao, Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars, Chemosphere, 92, 955-961 (2013). https://doi.org/10.1016/j.chemosphere.2013.03.009
  18. H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu, Relative distribution of $Pb^{2+}$ sorption mechanism by sludge-derived biochar, Water Res., 46, 854-862 (2012). https://doi.org/10.1016/j.watres.2011.11.058
  19. L. Qian and B. Chen, Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles, Environ. Sci. Technol., 47, 8759-8768 (2013).
  20. D. Mohan, A. Sarswat, Y. S. Ok, and C. U. J. Pittman, Organic and inorganic contaminants from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review, Bioresour. Technol., 160, 191-202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120
  21. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. Mcbride, and A. G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102, 8877-8884 (2011). https://doi.org/10.1016/j.biortech.2011.06.078
  22. Z. Liu and F.-S. Zhang, Removal of lead from water using biochar from hyrrothermal liquefaction of biomass, J. Hazard. Mater., 167, 933-939 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.085
  23. S. S. Choi, Removal of lead ions from aqueous solution using Juniper chinensis waste, Appl. Chem. Eng., 24(4), 428-432 (2013).
  24. M. N. Mohamad Ibrahim, W. S. Wan Ngah, M. S. Norliyana, W. R. Wan Daud, M. Rafatullah, O. Sulaiman, and R. Haqshim, A novel agricultural waste adsorbent for the removal of lead(II) from aqueous solutions, J. Hazard. Mater., 182, 377-385 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.044