DOI QR코드

DOI QR Code

Study on the Synthesis of Hydrophobic Silica and Its Application for Gas Barrier Film

소수성 실리카의 제조 및 가스차단성 필름으로의 응용에 관한 연구

  • Received : 2017.07.31
  • Accepted : 2017.08.09
  • Published : 2017.10.10

Abstract

In order to achieve a hydrophobic surface of silica, we reacted silica nanoparticles with hexamethyldisilazane (HMDS) under various reaction conditions. Modification of the surface of silica with organic materials was confirmed by the thermogravity and elemental analysis. The modified silica displayed nearly the same morphology as to the pristine silica. The reaction of 20 g of HMDS with 1 g of silica in decalin at $200^{\circ}C$ for 6 hours was found to be the optimum reaction condition in terms of the dispersity in toluene and the surface roughness of composite films. Oxygen permeation studies of the composite film demonstrated that the modified silica enhanced a gas barrier performance.

실리카 표면의 소수화를 위하여 다양한 조건 하에서 hexamethyldisilazane (HMDS)와 반응시켰다. 얻어진 반응물들은 형태학적으로는 실리카와 큰 차이가 없었으나, 열중량분석 및 원소분석을 통하여 실리카의 표면이 유기물로 개질된 것을 확인할 수 있었다. 톨루엔에서의 분산성 및 페녹시 수지와 복합화한 필름의 표면 조도를 측정하여 평가한 결과, 데칼린을 용매로 사용하여 $200^{\circ}C$에서 과량의 HMDS를 사용하여 6 h 반응시킨 물질이 최적으로 나타났다. 이와 같은 개질 실리카를 포함하는 복합체 필름의 산소 투과도 평가 결과, 개질 실리카는 필름의 산소 차단성을 향상시키는 것을 확인하였다.

Keywords

References

  1. T. V. Duncan, Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors, J. Colloid Interface Sci., 363, 1-24 (2011). https://doi.org/10.1016/j.jcis.2011.07.017
  2. J. Schneider, M. I. Akbar, J. Dutroncy, D. Kiesler, M. Leins, A. Schulz, M. Walker, U. Schumacher, and U. Stroth, Silicon oxide barrier coatings deposited on polymer materials for applications in food packaging industry, Plasma Process. Polym., 6, 700-704 (2009). https://doi.org/10.1002/ppap.200931702
  3. M. Moritoki, T. Mori, A. Shirakura, and T. Suzuki, Gas barrier property of silica-based films on PET synthesized by atmospheric pressure plasma enhanced CVD, Surf. Coat. Technol., 307, 1070-1073 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.074
  4. H. Chatham, Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates, Surf. Coat. Technol., 78, 1-9 (1996). https://doi.org/10.1016/0257-8972(95)02420-4
  5. B. Singh, J. Bouchet, G. Rochat, Y. Leterrier, J. A. E. Manson, and P. Fayet, Ultra-thin hybrid organic/inorganic gas barrier coatings on polymers, Surf. Coat. Technol., 201, 7107-7114 (2007). https://doi.org/10.1016/j.surfcoat.2007.01.013
  6. B. Singh, J. Bouchet, Y. Leterrier, J. A. E. Manson, G. Rochat, and P. Fayet, Durability of aminosilane-silica hybrid gas-barrier coatings on polymers, Surf. Coat. Technol., 202, 208-216 (2007). https://doi.org/10.1016/j.surfcoat.2007.05.036
  7. J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging, Packag. Technol. Sci., 16, 149-158 (2003). https://doi.org/10.1002/pts.621
  8. J. S. Lewis and M. S. Weaver, Thin-film permeation-barrier technology for flexible organic light-emitting devices, IEEE J. Sel. Top. Quantum Electron., 10, 45-57 (2004). https://doi.org/10.1109/JSTQE.2004.824072
  9. V. Vladimirov, C. Betchev, A. Vassiliou, G. Papageorgiou, and D. Bikiaris, Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties, Compos. Sci. Technol., 66, 2935-2944 (2006). https://doi.org/10.1016/j.compscitech.2006.02.010
  10. D. N. Bikiaris, A. Vassiliou, E. Pavlidou, and G. P. Karayannidis, Compatibilisation effect of PP-g-MA copolymer on iPP/$SiO_2$ nanocomposites prepared by melt mixing, Eur. Polym. J., 41, 1965-1978 (2005). https://doi.org/10.1016/j.eurpolymj.2005.03.008
  11. T. W. Yoo, J. S. Woo, J. H. Ji, B. M. Lee, and S. S. Kim, Preparation and characterization of epoxy nanocomposites with organosilanized fumed silica, Biomater. Res., 16, 32-39 (2012).
  12. V. M. Gun'ko, M. S. Vedamuthu, G. L. Henderson, and J. P. Blitz, Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface, J. Colloid Interface Sci., 228, 157-170 (2000). https://doi.org/10.1006/jcis.2000.6934
  13. S. V. Slavov, A. R. Sanger, and K. T. Chuang, Mechanism of silation of silica with hexamethyldisilazane, J. Phys. Chem., 104, 983-989 (2000). https://doi.org/10.1021/jp991715v
  14. N. Alipour, U. W. Gedde, M. S. Hedenqvist, S. Yu, S. Roth, K. Bruning, A. Vieyres, and K. Schneider, Structure and properties of polyethylene-based and EVOH-based multilayered films with layer thicknesses of 150 nm and greater, Eur. Polym. J., 64, 36-51 (2015). https://doi.org/10.1016/j.eurpolymj.2014.12.011
  15. S. H. Park, S. J. Kim, H. S. Lee, J. H. Choi, C. M. Jeong, M. H. Sung, D. H. Kim, and H. J. Park, Improvement of oxygen barrier of oriented polypropylene films coated by gravure ink-containing nanoclays, J. Appl. Polym. Sci., 121, 1788-1795 (2011). https://doi.org/10.1002/app.33457
  16. P. S. Kumbhar, V. M. Yadav, G. D. Yadav, Chemically modified oxide surfaces. In: D. E. Leyden and W. T. Collins (eds.). Gordon and Breach, 3rd Ed., p. 81-89, Philadelphia, USA (1989).
  17. T. Eliades, C. Gioka, G. Eliades, and M. Makou, Enamel surface roughness following debonding using two resin grinding methods, Eur. J. Orthod., 26, 333-338 (2004). https://doi.org/10.1093/ejo/26.3.333
  18. J. Verran and C. J. Maryan, Retention of Candida albicans on acrylic resin and silicone of different surface topography, J. Prosthet. Dent., 77, 535-539 (1997). https://doi.org/10.1016/S0022-3913(97)70148-3
  19. J. Joo, H. S. Kim, J. T. Kim, H. J. Yoo, J. R. Lee, and I. W. Cheong, Synthesis and characterization of epoxy silane-modified silica/polyurethane-urea nanocomposite films, Korean Chem. Eng. Res., 50, 371-378 (2012). https://doi.org/10.9713/kcer.2012.50.2.371