DOI QR코드

DOI QR Code

Optical Microscopic Image Analysis for Damaged GFRP Rebar by Alkali and High Temperature Exposures

알칼리와 고온노출에 의한 GFRP 보강근 손상에 대한 현미경분석 연구

  • Received : 2016.10.28
  • Accepted : 2016.11.22
  • Published : 2017.03.01

Abstract

In this experimental study, the characteristic of damages on GFRP rebar exposed to high temperature only and immerged in alkaline solution after the exposure to high temperature was analyzed through microscopic image analysis. The found microcrack and pores in resin matrix were quantitatively compared if there was effect of pre-exposure to high temperature. The damages, such as microcrack and pores in resin matrix, by alkali exposure were mainly found in rebar surface. On the other hand, the pores caused by high temperatures were extensively found in a section and had greater width than those caused by the alkali exposure. In results of the quantitative comparison, the accumulated length and widths of microcrack and pores in resin matrix in pre-exposed GFRP rebar to high temperature were respectively 1.5 and 1.4 times of those in the GFRP rebar only immerged in alkali solution. Therefore, the deterioration of resin matrix by the alkali exposure could be accelerated due to the pre-exposure to high temperature.

본 연구에서는 고온에 노출된 GFRP 보강근과 고온에 노출된 후 알칼리용액에 노출된 보강근의 단면을 현미경을 통해 관찰하고 발생된 손상의 특징을 고찰하였다. 또한, 각 시험체에 발생한 레진 균열과 공극에 대한 정량적 분석을 실시하였다. 알칼리로 인한 손상은 주로 표면에 집중되며 레진균열과 작은 공극을 발생시키는 것으로 확인되었다. 고온노출에 의한 손상은 레진균열과 공극을 발생시키는 것은 알칼리와 동일하지만 전단면에서 발생하며, 공극의 크기가 훨씬 크다. 또한 정량분석 결과, 동일한 알칼리 용액 노출조건에도 불구하고, $200^{\circ}C$ 이상의 고온에 노출된 시편에서 발견된 레진 균열과 공극이 고온노출이력이 전혀 없는 보강근에서 발견된 것 보다 1.5 및 1.4배 큰 것으로 확인되었다. 그러므로 동일한 알칼리 노출 조건이라 할지라도 $200^{\circ}C$ 이상의 고온에 노출된 보강근은 고온노출이력이 없는 보강근에 비하여 레진의 열화가 가속화 될 가능성이 있음을 알 수 있다.

Keywords

References

  1. Abbasi, A., Hogg, P. J. (2005), Temperature and Environmental Effects on Glass Fibre rebar: Modulus, Strength and Interfacial Bond Strength with Concrete, Composites Part B : Engineering, 36, 394-404. https://doi.org/10.1016/j.compositesb.2005.01.006
  2. Alsayed, S., Al-Salloum, Y., Almusallam, T., El-Gamal, S., Aqel, M. (2012), Performance of glass fiber reinforced polymer bars under elevated temperatures, Composites Part B: Engineering, 43, 2265-2271. https://doi.org/10.1016/j.compositesb.2012.01.034
  3. Chu, W., Wu, L., Karbhari, V. M. (2004), Durability Evaluation of Moderate Temperature Cured E-glass/Vinylester Systems, Composite Structures, 66, 367-376. https://doi.org/10.1016/j.compstruct.2004.04.058
  4. ElSafty, A., Benmokrane, B., Rizkalla, S., Mohamed, H., Hassan, M. (2014), Degradation Assessment of Internal Continuous Fiber Reinforcement in Concrete Environment, Composite Structures, Rep. BDK82-977-05, Florida Department of Transportation, Univ. of North Florida.
  5. Gardoni, P., Trejo, D., and Kim, Y. (2013), Time-Variant Strength Capacity Model for GFRP Bars Embedded in Concrete, Journal of Engineering Mechanics, 139, 1435-1445. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000588
  6. Hong, S. (2010), Assessment of Durability of Carbon/epoxy Composite Materials After Exposure to Elevated Temperatures and Immersion in Seawater for Navy Vessel Applications, Ph. D Thesis, University of California, San Diego.
  7. Kamal A., Boulfiza, M. (2011), Durability of GFRP Rebars in Simulated Concrete Solutions under Accelerated Aging Conditions, Journal of Composite for Construction, 15(4), 473-481. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000168
  8. Katsuki, F., and Uomoto, T. (1995), Prediction of Deterioration of FRP Rods Due to Alkali Attack, Proc. Second Int. RILEM Symp. (FRPRCS-2), Non-Metallic (FRP) Reinforcement for Concrete Structures, L. Taerwe, ed., E&FN Spon, London, 83-89.
  9. Kim, M., Moon, D., and Kim, S. (2014), Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(3), 108-115. https://doi.org/10.11112/jksmi.2014.18.3.108
  10. Micelli, F., and Nanni, A. (2004), Durability of FRP Rods for Concrete Structures, Construction and Building Materials, 18, 491-503. https://doi.org/10.1016/j.conbuildmat.2004.04.012
  11. Moon, D., and Oh, H. (2011) Durability of GFRP Rebar with Ribs Containing Milled Alkaline Resistant Glass Fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(1), 281-287. https://doi.org/10.11112/jksmi.2011.15.1.281
  12. Oh, H., and Moon, D. (2012) A Degradation Characteristic of FRP Rebars Attacked by Combined Environmental Factors, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(3), 1-10. https://doi.org/10.11112/jksmi.2012.16.3.001
  13. Sen, R., Mullins, G., and Salem, T. (2002) Durability of E-glass/Vinyl Ester Reinforcement in Alkaline Solution, ACI Structural Journal, 99(3), 369-375.
  14. Trejo, D., Aguiniga, F., Yuan, R., James, R. W., and Keating, P. B. (2005). Characterization of Design Parameters for Fiber Reinforced Polymer Composite Reinforced Concrete Systems, Research Rep. 9-1520-3, Texas Transportation Institute, Texas A&M Univ., College Station, TX.