DOI QR코드

DOI QR Code

Effect of Construction Joint on Leakage Resistance of Gas in Reinforced Concrete Pressure Vessels

철근콘크리트 압력용기에서 시공이음이 가스의 누설저항에 미치는 영향

  • Yi, Seong-Tae (Department of Civil and Environmental Engineering, Inha Technical College)
  • 이성태 (인하공업전문대학 토목환경과)
  • Received : 2016.12.08
  • Accepted : 2016.12.23
  • Published : 2017.03.01

Abstract

In the nuclear power plant, the steel or polymer liner plates are adopted to prohibit the inner concrete surface from contacting with gas or liquid materials. If there is an accident, the plate may be damaged, and, in this case, concrete shall have the final responsibility to safety requirements. In this paper, an experimental research was carried out to investigate the effects of construction joint and wet and loading conditions on the permeability of concrete. The test results showed that, under a construction joint in the wet condition, leakage of gas pressure has been started from $1kg/cm^2$. However, when there are no construction joints, it is initiated from $2kg/cm^2$. In addition, under the air dried and unloading condition, regardless of with or without the presence of the construction joint, since the gas passage that exist in concrete is constant, leakage has a constant tendency to increase. Finally, under the loading condition, as described in Reference 1, since leakage is inversely proportional to the thickness of the wall, and, considering the wall thickness of the actual plant, it is found that there will not be no problem in the sealing of the gas.

원자력발전소에서 철판이나 폴리머 라이너 판은 가스나 액체가 격남건물 외부로 누설되지 않도록 하기 위하여 채택되었다. 만일 어떤 사고가 발생하여 이 판이 손상을 입는 다면 콘크리트는 안전성 요구 측면에서 최후의 보루가 되어야 한다. 그 능력을 구명하기 위하여 본 논문에서는 시공이음의 유 무와 습윤조건 및 하중상태가 콘크리트의 누설저항성에 미치는 영향을 검토하기 위한 연구가 수행되었다. 실험결과로부터, 습윤상태에 시공이음이 있는 경우, 가스의 누설은 압력이 $1kg/cm^2$부터 시작되었으나 시공이음이 없는 경우는 $2kg/cm^2$부터 누설이 시작됨을 알 수 있었다. 또한, 기건 및 무재하 상태에는 시공이음의 유 무에 관계없이 콘크리트에 존재하는 가스의 통로가 일정하므로 누설량이 일정한 경향을 가지고 증가하였다. 최종적으로 재하상태에는 Okamoto et al.(1995)의 연구에서설명하는 바와 같이 누설량이 벽체의 두께에 반비례하므로 실제 발전소에 설치되는 벽체 두께를 고려하면 시공이음에 있어도 가스의 밀봉에는 문제가 없을 것으로 판단된다.

Keywords

References

  1. British Standards Institution (1989), Code of Practice for Design of Concrete Structures for Retaining Aqueous Liquids, BS8007.
  2. Greiner, U., and Ramm, W. (1995), Air Leakage Characteristics in Cracked Concrete, Nuclear Engineering and Design, 156, 167-172. https://doi.org/10.1016/0029-5493(94)00942-R
  3. Iriya, K., Itoh, Y., Hosoda, M., Fujiwara, A., and Tsuji, Y. (1992), Experimental Study on the Water Permeability of a Reinforced Concrete Silo for Radioactive Waste Repository, Nuclear Engineering and Design, 138, 165-170. https://doi.org/10.1016/0029-5493(92)90292-4
  4. Mills, R. H. (1987), Gas and Water Permeability of Concrete for Reactor Buildings - Prototype Scale Specimens, A research report prepared for the atomic energy control board Ottawa, Canada.
  5. Okamoto, K., Hayakawa, S., and Kamimura, R. (1995), Experimental Study of Air Leakage from Cracks in Reinforced Concrete Walls, Nuclear Engineering and Design, 156, 159-165. https://doi.org/10.1016/0029-5493(94)00941-Q
  6. Rizkalla, S. H., Lau, B. L., and Simmonds, S. H. (1984), Air Leakage Characteristics in Reinforced Concrete, Journal of Structural Engineering, 110(5), 1149-1162. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(1149)
  7. Sugiyama, T., Bremner, T. W., and Holm, T. A. (1996), Effect of Gas Permeability in Concrete, ACI Materials Journal, Vol. 93, No. 5, 443-450.
  8. Suzuki, T., Takiguchi, K., and Hotta, H. (1991), Leakage of Gas through Concrete Cracks, Transactions of the 11th International Conference on Structural Mechanics in Reactor Technology, H, 187-192.
  9. Suzuki, T., Takiguchi, K., Hotta, H., and Kojima, N. (1989), Experimental Study on the Leakage of Gas through Cracked concrete walls, Transactions of the 10th International Conference on Structural Mechanics in Reactor Technology, Q, 145-150.
  10. Suzuki, T., Takiguchi, K., and Ide, Y. (1987), Leakage of Gas through Cracked Concrete Walls, Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, H, 181-186.
  11. Tinkler, J., Frate, R. D., and Rizkalla, S. H. (1985), The Prediction of Air Leakage Rate through Cracks in Pressurized Reinforced Concrete Vessels, Transactions of the 8th International Conference on Structural Mechanics in Reactor Technology, J, 25-30.