DOI QR코드

DOI QR Code

A Comparative Study on Reliability Attributes for Software Reliability Model Dependent on Lindley and Erlang Life Distribution

랜들리 및 어랑 수명분포에 의존한 소프트웨어 신뢰성 모형에 대한 신뢰도 속성 비교 연구

  • Yang, Tae-Jin (Department of Electronic Engineering, Namseoul University)
  • Received : 2017.10.15
  • Accepted : 2017.10.19
  • Published : 2017.10.30

Abstract

Software reliability is one of the most basic and essential problems in software development. In order to detect the software failure phenomenon, the intensity function, which is the instantaneous failure rate in the non-homogeneous Poisson process, can have the property that it is constant, non-increasing or non-decreasing independently at the failure time. In this study, was compared the reliability performance of the software reliability model using the Landely lifetime distribution with the intensity function decreasing pattern and Erlang lifetime distribution from increasing to decreasing pattern in the software product testing process. In order to identify the software failure phenomenon, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, was compared and evaluated software reliability using software failure interval time data. As a result, the reliability of the Landely model is higher than that of the Erlang distribution model. But, in the Erlang distribution model, the higher the shape parameter, the higher the reliability. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing software reliability attributes data and basic knowledge to software reliability model using software failure analysis.

소프트웨어 개발시행 과정에서 소프트웨어 신뢰성은 매우 기본적이고 필수적인 문제 중에 하나이다. 소프트웨어 고장현상을 파악하기 위하여 비동질적인 포아송 과정에서 순간 고장률인 강도함수가 고장시간에 독립적으로 일정하거나, 증가형 혹은, 감소형 추세를 가질 수 있다. 본 논문에서는 소프트웨어 설계 과정에서 강도형태가 감소패턴을 따르는 랜들리 수명분포와 증가하다가 감소하는 어랑수명 분포를 활용한 소프트웨어 신뢰속성 모형에 대하여 신뢰도 장단점에 관한 연구를 하였다. 소프트웨어 고장현상을 파악하기 위하여 모수추정은 최우추정법을 적용하였다. 따라서, 본 논문에서는 소프트웨어 고장시간 자료를 적용하여 소프트웨어 신뢰도를 비교하고, 평가하였다. 그 결과, 랜들리 모형이 어랑분포 모형보다 신뢰도가 상승하는 것으로 나타났으나, 어랑분포 모형에서는 형상모수가 높을수록 높은 신뢰도를 나타내는 추세를 보였다. 본 논문를 통하여 소프트웨어 기획 부서에서는 특정한 수명분포와 형상모수를 활용함으로서 소프트웨어 고장분석을 활용한 소프트웨어 신뢰성 모형에 대한 신뢰성 속성을 적용한 데이터 및 기본 지식을 제공함으로서 소프트웨어 설계에 실질적인 도움을 줄 수 있다.

Keywords

References

  1. Gokhale, S. S. and Trivedi, K. S. A, "time/structure ased software reliability model", Annals of oftware Engineering. 8, pp. 85-121. 1999. https://doi.org/10.1023/A:1018923329647
  2. Goel A L, Okumoto K, "Time-dependent fault etection rate model for software and other performance measures", IEEE Trans. Reliab. 28, pp. 206-11, 1978.
  3. Huang C-Y. Performance analysis of software reliability growth models with testing-effort and change-point. J Syst Software. 2005; 76:181-94. https://doi.org/10.1016/j.jss.2004.04.024
  4. Kuei-Chen, C., Yeu-Shiang, H., and Tzai-Zang, L., "A study of software reliability growth from the perspective of learning effects", Reliability Engineering and System Safety 93, pp. 1410-1421, 2008. https://doi.org/10.1016/j.ress.2007.11.004
  5. Hee-Cheul KIM, "The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Rayleigh and Burr Type", Journal of korea society of digital industry and information management, Volume 10, No.2, pp. 1-11. 2014. https://doi.org/10.17662/ksdim.2014.10.1.001
  6. Rama Shanker and A. Mishra, "A quasi Lindley distribution", African Journal of Mathematics and Computer Science Research, 6(4), pp.64-71.2013.
  7. Adhikari, T. R. and Srivastava, R. S., "Poisson-Size-biased Lindley Distribution", International Journal of Scientific and Research Publications 4(Issue 1),1-6, 2014.
  8. Kim H-C. "The Property of Learning effect based on Delayed Software S-Shaped Reliability Model using Finite NHPP Software Cost Model, Indian Journal of Science and Technology 8(34), pp.1-7, 2015.
  9. Tae-Hyun Yoo, "The Infinite NHPP Software Reliability Model based on Monotonic Intensity Function", Indian Journal of Science and Technology, Volume 8, No. 14, pp. 1-7, 2015.
  10. Hong-kyu Kwon and Hee-cheul Kim, "A Comparative Software Development Cost Model based on Hazard Function of Lindley Distribution", Information, Volume 19, No. 11(A), pp. 5137-5144, 2016.
  11. R. Satya Prasad, K. R. H. Rao and R.R. L Kantha, "Software Reliability Measuring using Modified Maximum Likelihood Estimation and SPC", International Journal of Computer Applications (0975-8887) 21(7), pp. 1-5 2011. https://doi.org/10.5120/2527-3440
  12. K. Kanoun and J. C. Laprie, "Handbook of Software Reliability Engineering", M.R.Lyu, Editor, chapter Trend Analysis. McGraw-Hill New York, NY, pp. 401-437, 1996.
  13. Tae-Jin Yang, "A Performance Comparative Evaluation for Finite and Infinite Failure Software Reliability Model using the Erlang Distribution",The Korea Institute of Information, Electronics, and Communication Technology, Volume 9, No 4, pp. 351-358, 2016. https://doi.org/10.17661/jkiiect.2016.9.4.351
  14. Tae-Jin Yang, "The Comparative Software Development Cost Model Considering the change in the shape parameter of the Erlang Distribution",The Korea Institute of Information, Electronics, and Communication Technology, Volume 9, No 6, pp. 566-572, 2016. https://doi.org/10.17661/jkiiect.2016.9.6.566

Cited by

  1. 다양한 위험함수에 의존한 소프트웨어 신뢰모형의 적용에 대한 비교 평가에 관한 연구 vol.11, pp.6, 2017, https://doi.org/10.17661/jkiiect.2018.11.6.800