DOI QR코드

DOI QR Code

Neural networks optimization for multi-dimensional digital signal processing in IoT devices

IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화

  • 최권택 (강남대학교 소프트웨어응용학부 가상현실전공)
  • Received : 2017.09.28
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

Deep learning method, which is one of the most famous machine learning algorithms, has proven its applicability in various applications and is widely used in digital signal processing. However, it is difficult to apply deep learning technology to IoT devices with limited CPU performance and memory capacity, because a large number of training samples requires a lot of memory and computation time. In particular, if the Arduino with a very small memory capacity of 2K to 8K, is used, there are many limitations in implementing the algorithm. In this paper, we propose a method to optimize the ELM algorithm, which is proved to be accurate and efficient in various fields, on Arduino board. Experiments have shown that multi-class learning is possible up to 15-dimensional data on Arduino UNO with memory capacity of 2KB and possible up to 42-dimensional data on Arduino MEGA with memory capacity of 8KB. To evaluate the experiment, we proved the effectiveness of the proposed algorithm using the data sets generated using gaussian mixture modeling and the public UCI data sets.

가장 대표적인 기계학습 알고리즘인 딥러닝 방법은 여러 응용 분야에서 활용성이 입증돼 디지털신호처리에 널리 사용되고 있다. 그러나 많은 학습데이터를 사용해 학습하는 과정에서 많은 메모리와 학습시간이 필요하기 때문에 CPU 성능과 메모리 용량이 제한된 IoT 디바이스에 딥러닝 기술을 적용하기는 어렵다. 특히 메모리 용량이 2K~8K 로 극히 적은 아두이노 기반의 디바이스를 사용한다면 알고리즘 구현에 많은 한계가 발생한다. 본 논문에서는 정확성과 효율성이 입증돼 여러 분야에서 활용되고 있는 ELM 알고리즘을 아두이노에서 최적화하는 방법을 제안하고, 실험을 통해 메모리 용량이 2KB인 아두이노 UNO와 메모리 용량이 8KB인 아두이노 MEGA에서 각각 15차원, 42차원의 다중 클래스 학습이 가능함을 보였다. 실험을 입증하기 위해 가우시안 혼합 모델링을 사용해 생성한 데이터셋과 범용적으로 사용하는 UCI 데이터셋을 사용해 제안한 알고리즘의 효율성을 입증하였다.

Keywords

References

  1. Faure, Bouyer, Mercier, Robitaille, McFadyen, Fortin Cote, Cardou, Gosselin, Bonenfant, Laurendeau, "Development of a virtual-reality system with large-scale haptic interface and accessible motion capture for rehabilitation", 2017 International Conference on Virtual Rehabilitation (ICVR), Pages: 1 - 2.
  2. Sukun Li, Avery Leider, Meikang Qiu, Keke Gai, Meiqin Liu, "Brain-Based Computer Interfaces in Virtual Reality", 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), Pages: 300 - 305.
  3. S.-h. Kim and D.-H. Shin, "Effects of whole body movements in using virtual reality headsets on visually induced motion sickness", Journal of Digital Contents Society, Vol. 18, No. 2, pp. 283-291, Apr. 2017. https://doi.org/10.9728/dcs.2017.18.2.283
  4. Adnan O. M, Abuassba, Dezheng Zhang, Xiong Luo, Ahmad Shaheryar, Hazrat Ali, "Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines", Comp. Int. and Neurosc. 2017: 3405463:1-3405463:11 (2017).
  5. G. Huang, S. Song, and K. You, "Trends in extreme learning machines: a review", Neural Networks, vol. 61, pp. 32.
  6. Z. Bai, G.-B. Huang, D. Wang, H. Wang, M.B. Westover, "Sparse extreme learning machine for classification", IEEE Transactions on Cybernetics (2014).
  7. G. Huang, S. Song, J. Gupta, C. Wu, "Semi-supervised and unsupervised extreme learning machines", IEEE Transactions on Cybernetics (2014).
  8. F. Cao, B. Liu, D.S. Park, "Image classification based on effective extreme learning machine", Neurocomputing, 102 (2013), pp. 90-97. https://doi.org/10.1016/j.neucom.2012.02.042
  9. K. Choi, K.A. Toh, H. Byun, "Incremental face recognition for large-scale social network services", Pattern Recognition, 45 (8) (2012), pp. 2868-2883. https://doi.org/10.1016/j.patcog.2012.02.002
  10. G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, "Extreme learning machine: theory and applications", Neurocomputing, 70 (1) (2006), pp. 489-501. https://doi.org/10.1016/j.neucom.2005.12.126
  11. http://paulbourke.net/miscellaneous/determinant/
  12. http://www.public.iastate.edu/-dicook/JSS/paper/code/svd.c
  13. https://playground.arduino.cc/Code/MatrixMath.
  14. J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, "Applied Linear Regression Models", 3rd ed. Chicago, IL: Irwin, 1996.
  15. G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification", IEEE Trans. Syst. Man Cybern. Part B: Cybernetics, 42:513-529, 2012. https://doi.org/10.1109/TSMCB.2011.2168604