DOI QR코드

DOI QR Code

HERMITIAN POSITIVE DEFINITE SOLUTIONS OF THE MATRIX EQUATION Xs + A*X-tA = Q

  • Received : 2016.06.18
  • Accepted : 2016.12.26
  • Published : 2017.11.01

Abstract

In this paper, the Hermitian positive definite solutions of the matrix equation $X^s+A^*X-^tA=Q$, where Q is an $n{\times}n$ Hermitian positive definite matrix, A is an $n{\times}n$ nonsingular complex matrix and $s,t{\in}[1,{\infty})$ are discussed. We find a matrix interval which contains all the Hermitian positive definite solutions of this equation. Also, a necessary and sufficient condition for the existence of these solutions is presented. Iterative methods for obtaining the maximal and minimal Hermitian positive definite solutions are proposed. The theoretical results are illustrated by numerical examples.

Keywords

References

  1. R. P. Agarwal, M. Meehan, and D. O'Regan, Fixed Point Theory and Applications, Cambridge University, 2001.
  2. W. N. Anderson, T. D. Morley, and G. E. Trapp, Ladder networks, fixed points, and the geometric mean, Circuits Systems Signal Process. 2 (1983), no. 3, 259-268. https://doi.org/10.1007/BF01599069
  3. T. Ando, Limit of iterates of cascade addition of matrices, Numer. Funct. Anal. Optim. 2 (1980), no. 7-8, 579-589. https://doi.org/10.1080/01630563.1980.10120628
  4. R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, Springer-Verlag New York, 1997.
  5. R. S. Bucy, A priori bound for the Riccati equation, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 111, 645-656, Probability Theory, University of California Press, Berkeley, 1972.
  6. J. Cai and G. Chen, Some investigation on Hermitian positive definite solutions of the matrix equation $X^s+A^*X^{-t}A=Q$, Linear Algebra Appl. 430 (2009), no. 8-9, 2448-2456. https://doi.org/10.1016/j.laa.2008.12.033
  7. Sh. Du and J. Hou, Positive definite solutions of operator equations $X^m+A^*X^{-n}A = I$, Linear Multilinear Algebra 51 (2003), no. 2, 163-173. https://doi.org/10.1080/0308108031000068958
  8. X. F. Duan and A. P. Liao, On the existence of Hermitian positive definite solutions of the matrix equation $X^s+A^*X^{-t}A=Q$, Linear Algebra Appl. 429 (2008), no. 4, 673-687. https://doi.org/10.1016/j.laa.2008.03.019
  9. X. F. Duan and A. P. Liao, On the nonlinear matrix equation $X+A^*X^{-q}A=Q$ (q $\geq$ 1), Math. Comput. Modelling 49 (2009), no. 5-6, 936-945. https://doi.org/10.1016/j.mcm.2008.10.009
  10. S. M. El-Sayed and A. M. Al-Dbiban, A new inversion free iteration for solving the equation $X+A^TX^{-1}A=Q$, J. Comput. Appl. Math. 181 (2005), no. 1, 148-156. https://doi.org/10.1016/j.cam.2004.11.025
  11. J. C. Engwerda, On the existence of a positive definite solution of the matrix equation $X+A^TX^{-1}A=I$, Linear Algebra Appl. 194 (1993), 91-108. https://doi.org/10.1016/0024-3795(93)90115-5
  12. T. Furuta, Operator inequalities associated with Holder-McCarthy and Kantorovich inequalities, J. Inequal. Appl. 2 (1998), no. 2, 137-148.
  13. W. L. Green and E. W. Kamen, Stabilization of linear systems over a commutative normed algebra with applications to spatially distributed parameter dependent systems, SIAM J. Control Optim. 23 (1985), 1-18. https://doi.org/10.1137/0323001
  14. V. I. Hasanov and I. G. Ivanov, Solutions and perturbation estimates for the matrix equations $X{\pm}A^*X^{-n}A=Q$, Appl. Math. Comput. 156 (2004), no. 2, 513-525. https://doi.org/10.1016/j.amc.2003.08.007
  15. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
  16. I. G. Ivanov, On positive definite solutions of the family of matrix equations $X+A^*X^{-n}A=Q$, J. Comput. Appl. Math. 193 (2006), no. 1, 277-301. https://doi.org/10.1016/j.cam.2005.06.007
  17. M. Parodi, La localisation des valeurs caracterisiques des matrices et ses applications, Gauthier-Villars, Paris, 1959.
  18. Z. Y. Peng, S. M. El-Sayed, and X. L. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation $X+A^*X^{-{\alpha}}A=Q$, J. Comput. Appl. Math. 200 (2007), no. 2, 520-527. https://doi.org/10.1016/j.cam.2006.01.033
  19. W. Pusz and S. L. Woronowitz, Functional calculus for sesquilinear forms and the puri cation map, Rep. Mathematical Phys. 8 (1975), no. 2,159-170. https://doi.org/10.1016/0034-4877(75)90061-0
  20. X. T. Wang and Y. M. Li, On equations that are equivalent to the nonlinear matrix equation $X+A^*X^{-{\alpha}}A=Q$, J. Comput. Appl. Math. 234 (2010), no. 8, 2441-2449. https://doi.org/10.1016/j.cam.2010.03.004
  21. X. Y. Yin, S. Y. Liu, and L. Fang, Solutions and perturbation estimates for the matrix equation $X^s+A^*X^{-t}A=Q$, Linear Algebra Appl. 431 (2009), no. 9, 1409-1421. https://doi.org/10.1016/j.laa.2009.05.010
  22. Y. Yueting, The iterative method for solving nonlinear matrix equation $X^s+A^*X^{-t}A=Q$, Appl. Math. Comput. 188 (2007), no. 1, 46-53. https://doi.org/10.1016/j.amc.2006.09.085
  23. X. Zhan, Matrix Inequalities, Springer-Verlag Berlin Heidelberg, 2002.
  24. D. Zhou, G. Chen, G. Wu, and X. Zhang, Some properties of the nonlinear matrix equation $X^s+A^*X^{-t}A=Q$, J. Math. Anal. Appl. 392 (2012), no. 1, 75-82. https://doi.org/10.1016/j.jmaa.2012.02.046