DOI QR코드

DOI QR Code

SYMBOLS OF MINIMUM TYPE AND OF ZERO CLASS IN EXPONENTIAL CALCULUS

  • Received : 2017.11.21
  • Accepted : 2018.01.02
  • Published : 2018.01.31

Abstract

We introduce formal symbols of product type, of zero class, and of minimum type and show that the formal power series representations for $e^p$ and $e^q$ are formal symbols of product type giving the same pseudodifferential operator, where p and q are formal symbols of minimum type and p - q is of zero class.

Keywords

References

  1. Aoki, T.(1983). Calcul exponentiel des operateurs microdifferentiels d'ordre in ni. I, Ann. Inst. Fourier, Grenoble, v. 33-4, pp. 227-250.
  2. Aoki, T.(1984). Symbols and formal symbols of pseudodifferential operators, Advanced Syudies in Pure Math., v. 4 (K.Okamoto, ed.), Group Representation and Systems of Differential Equations, Proceedings Tokyo 1982, Kinokuniya, Tokyo; North-Holland, Amsterdam-New York-Oxford, pp. 181-208 .
  3. Aoki, T.(1983). Exponential calculus of pseudodifferential operators(Japanese), Sugaku , v. 35, no. 4, pp. 302-315.
  4. Aoki, T.(1983). The exponential calculus of microdi erential operators of in nite order III, Proc. Japan Acad. Ser. A math Sci., v. 59, no. 3, pp. 79-82. https://doi.org/10.3792/pjaa.59.79
  5. Aoki, T.(1982). The exponential calculus of microdi erential operators of in nite order II, Proc. Japan Acad. Ser. A Math . Sci., v. 58, no. 4, pp. 154-157. https://doi.org/10.3792/pjaa.58.154
  6. Aoki, T.(1982). The exponential calculus of microdi erential operators of in nite order I, Proc. Japan Acad. Ser. A Math . Sci., v. 58, no. 2, pp. 58-61. https://doi.org/10.3792/pjaa.58.58
  7. Aoki, T.(1997). The theory of symbols of pseudodifferential operators with in nite order, Lectures in Mathematical Sciences (Japanese), Univ. of Tokyo, v. 14.
  8. Aoki, T.(1982). Invertibility for microdifferential operators of In nite Order, Publ. RIMS, Kyoto Univ., v. 18, pp. 1-29. https://doi.org/10.2977/prims/1195184013
  9. Kataoka, K.(1976). On the theory of Radon transformations of hyperfunctions and its applications, Master's thesis in Univ. Tokyo(Japanese).
  10. Kataoka, K.(1981). On the theory of hyperfunctions, J. Fac. Sci. Univ. Tokyo Sect. IA, v. 28, pp. 331-412.
  11. Kataoka, K.(1985). Microlocal energy methods and pseudo-differential operators, Invent. math., v. 81, pp. 305-340. https://doi.org/10.1007/BF01389055
  12. Lee, C. H.(2009). Composition of pseudodi erential operators of product type, Proceedings of the Jangjeon Mathematical Society, v. 12, no. 3, pp. 289-298.
  13. Lee, C. H.(2011). Exponential function of pseudodi erential operator of minimum type, Proceedings of the Jangjeon Mathematical Society, v. 14, no. 1, pp. 149-160.
  14. Lee, C. H.(2013). The exponential calculus of pseudodi erential operators of minimum type. I, Proceedings of the Japan Academy , v. 89, Ser. A, no. 1, pp. 6-10. https://doi.org/10.3792/pjaa.89.6
  15. Lee, C. H.(2014). Formal adjoint of pseudodi erential operator of product type, Proceedings of the Jangjeon Mathematical Society, v. 17, no. 2, pp. 299-305.
  16. Lee, C. H.(2016). A role of symbols of minimum type in exponential calculus, East Asian Math. J., v. 32, no. 1, pp. 35-41. https://doi.org/10.7858/eamj.2016.004
  17. Sato, M., T. Kawai and M. Kashiwara(1973). Microfunctions and Pseudodifferential Equations, Hyperfunctions and Pseudo-Differential Equations (H.Komatsu, ed.), Proceeding, Katata 1971, Lecture Notes in Math., v. 287, Springer, Berlin-Heidelberg-New York, pp. 265-529.