References
- F. Li, Z. Zhao and Y. Chen, Global existence and uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, J Nonlinear Analysis: Real World Applications, 12 (2011), 1759-1773. https://doi.org/10.1016/j.nonrwa.2010.11.009
- F. Li and Z. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Real World Applications, 74 (2011), 3468-3477.
- C. F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151-165.
- R. W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh Vol. 82 (1978), 19-26.
- S. Y. Lee and C. D. Mote, Vibration control of an axially moving string by boundary control, ASME J. Dyna. Syst., Meas., Control, 118 (1996), 66-74. https://doi.org/10.1115/1.2801153
- Y. Li, D. Aron and C. D. Rahn, Adaptive vibration isolation for axially moving strings: Theory and experiment, Automatica, 38 (1996), 379-390.
- J. L. Lions, On some question on boundary value problem of mathematical physics, 1, in: G.M. de La Penha, L. A. Medeiros (Eds.), Contemporary Developments of Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam, 1978
- M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, Journal of Mathematical Analysis and Applications, 238 (1999), 418-428. https://doi.org/10.1006/jmaa.1999.6517
- F. Pellicano and F. Vestroni, Complex dynamics of high-speed axially moving systems, Journal of Sound and Vibration, 258 (2002), 31-44. https://doi.org/10.1006/jsvi.2002.5070
- G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1983.
- G. Kirchhoff, Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014. https://doi.org/10.1016/j.camwa.2011.08.011
- G. Kirchhoff, Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617. https://doi.org/10.1016/j.na.2012.01.018
- J. Limaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with nonhomogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820. https://doi.org/10.1016/j.jmaa.2008.02.051
- M.L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electronic J. Differential Equations 73 (2001), 1-11.
- M.L. Santos, Stabilization for the viscoelastic Kirchhoff type equation with nonlinear source, East Asian Math. J. 32 (2016), 117-128. https://doi.org/10.7858/eamj.2016.012
- M.L. Santos, Asymptotic behavior for the viscoelastic Kirchhoff type equation with an internal time-varying delay term, East Asian Math. J. 32 (2016), 399-412. https://doi.org/10.7858/eamj.2016.030
- M.L. Santos, Exponential stability for the generalized Kirchhoff type equation in the presence of past and nite history, East Asian Math. J. 32 (2016), 659-675. https://doi.org/10.7858/eamj.2016.046
- Adams, R. Sobolev Spaces, Academic press, New York (1975).
Cited by
- MATHEMATICAL MODELLING FOR THE AXIALLY MOVING MEMBRANE WITH INTERNAL TIME DELAY vol.37, pp.1, 2018, https://doi.org/10.7858/eamj.2021.012