고성능 TFT 소자 응용을 위한 폴리스티렌 나노입자를 이용한 나노 그물망 제작공정 개발

Formation of nanonet structure using polystyrene nanoparticle for high-performances TFT applications

  • 윤길상 (포항공과대학교 전자전기공학과) ;
  • 이준영 (포항공과대학교 전자전기공학과) ;
  • 박익수 (포항공과대학교 전자전기공학과) ;
  • ;
  • 백록현 (포항공과대학교 전자전기공학과) ;
  • 신현진 (충남대학교 수의학과) ;
  • 이정수 (포항공과대학교 전자전기공학과)
  • Yoon, Gilsang (Department of Electrical Engineering, POSTECH) ;
  • Lee, Junyoung (Department of Electrical Engineering, POSTECH) ;
  • Park, Iksoo (Department of Electrical Engineering, POSTECH) ;
  • Jin, Bo (Department of Electrical Engineering, POSTECH) ;
  • Baek, Rock-Hyun (Department of Electrical Engineering, POSTECH) ;
  • Shin, Hyun-jin (Department of Veterinary Medicine, Chungnam National University) ;
  • Lee, Jeong-soo (Department of Electrical Engineering, POSTECH)
  • 투고 : 2018.08.16
  • 심사 : 2018.09.16
  • 발행 : 2018.09.30

초록

We have developed a nonlithographic patterning technique using polystyrene nanoparticles to form nanonet channel structures which is promising for high-performance TFT applications. Nanoparticles assisted patterning (NAP) is a technique to form uniform nano-patterns by applying lift-off and dry etch process. Oxygen plasma treatment was used to control the diameters of nanonet hole size to realize a branch width down to 100 nm. NAP technology can be very promising to fabricate nanonet structure with advantages of lower manufacturing cost and large-area patterning capability.

키워드

참고문헌

  1. Rothschild, M., Bloomstein, T. M., Efremow, N., Fedynyshyn, T. H., Fritze, M., Pottebaum, I., and Switkes, M., "Nanopatterning with UV optical lithography," MRS bulletin, 30(12), 942-946, (2005). https://doi.org/10.1557/mrs2005.247
  2. Galatsis, K., Wang, K. L., Ozkan, M., Ozkan, C. S., Huang, Y., Chang, J. P., and Botros, Y., "Patterning and templating for nanoelectronics," Advanced Materials, 22(6), 769-778, (2010). https://doi.org/10.1002/adma.200901689
  3. Simeone, F. C., Albonetti, C., and Cavallini, M., "Progress in micro-and nanopatterning via electro chemical lithography," The Journal of Physical Chemistry C, 113(44), 18987-18994, (2009). https://doi.org/10.1021/jp903494e
  4. Lee, H., Lee, J., Baek, S., Jeong, W. H., Lee, Y., Yang, T., and Lee, J. S., "Highly Enhanced Performance of Network Channel Polysilicon Thin-Film Transistors," IEEE Electron Device Letters, 38(2), 187-190, (2017). https://doi.org/10.1109/LED.2016.2636924
  5. Cho, J., Char, K., Hong, J. D., and Lee, K. B., "Fabrication of highly ordered multilayer films using a spin self-assembly method," Advanced Materials, 13(14), 1076-1078, (2001). https://doi.org/10.1002/1521-4095(200107)13:14<1076::AID-ADMA1076>3.0.CO;2-M
  6. Mihi, A., Ocana, M., and Miguez, H., "Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media," Advanced Materials, 18(17), 2244-2249, (2006). https://doi.org/10.1002/adma.200600555
  7. Nawa, M., Baba, R., Nakabayashi, S., and Dushkin, C., "Ordering effect of high magnetic field on silver nanoparticle arrays for electron-transfer devices," Nano Letters, 3(3), 293-297, (2003). https://doi.org/10.1021/nl0258630
  8. Maoz, R., and Sagiv, J., "On the formation and structure of self-assembling monolayers. I. A comparative atrwettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads," Journal of Colloid and Interface Science, 100(2), 465-496, (1984). https://doi.org/10.1016/0021-9797(84)90452-1
  9. Soleimani-Amiri, S., Gholizadeh, A., Rajabali, S., Sanaee, Z., and Mohajerzadeh, S., "Formation of Si nanorods and hollow nano-structures using high precision plasma-treated nanosphere lithography," RSC Advances, 4(25), 12701-12709, (2014). https://doi.org/10.1039/c4ra00796d
  10. Li, L., Zhai, T., Zeng, H., Fang, X., Bando, Y., and Golberg, D., "Polystyrene sphere-assisted onedimensional nanostructure arrays: synthesis and applications," Journal of Materials Chemistry, 21(1), 40-56, (2011). https://doi.org/10.1039/C0JM02230F
  11. Kuo, C. W., Shiu, J. Y., Cho, Y. H., and Chen, P. E. I. L. I. N., "Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks," Advanced materials, 15(13), 1065-1068, (2003). https://doi.org/10.1002/adma.200304824
  12. Suni, T., Henttinen, K., Suni, I., and Makinen, J., "Effects of plasma activation on hydrophilic bonding of Si and SiO2," Journal of the Electrochemical Society, 149(6), G348-G351, (2002). https://doi.org/10.1149/1.1477209