Abstract
${\bot}$It is often said that in a purely formal perspective, intuitionistic logic has no obvious advantage to deal with the liar-type paradoxes. In this paper, we will argue that the standard intuitionistic natural deduction systems are vulnerable to the liar-type paradoxes in the sense that the acceptance of the liar-type sentences results in inference to absurdity (${\perp}$). The result shows that the restriction of the Double Negation Elimination (DNE) fails to block the inference to ${\perp}$. It is, however, not the problem of the intuitionistic approaches to the liar-type paradoxes but the lack of expressive power of the standard intuitionistic natural deduction system. We introduce a meta-level negation, ⊬$_s$, for a given system S and a meta-level absurdity, ⋏, to the intuitionistic system. We shall show that in the system, the inference to ${\perp}$ is not given without the assumption that the system is complete. Moreover, we consider the Double Meta-Level Negation Elimination rules (DMNE) which implicitly assume the completeness of the system. Then, the restriction of DMNE can rule out the inference to ${\perp}$.
순수하게 형식적인 견지에서 직관주의 논리는 거짓말쟁이 유형의 역설을 다루는데 어떠한 이점도 없다고 여겨진다. 이 글에서 우리는 표준 직관주의 자연연역체계가 거짓말쟁이 유형의 역설에 취약함을 논할 것이다. 다시 말해, 거짓말쟁이 유형의 문장을 수용함이 모순(${\perp}$)을 도출하는 추론을 야기한다는 것이다. 이러한 결과는 이중부정 제거규칙(DNE)에 대한 제약이 ${\perp}$을 도출하는 추론을 막지 못한다는 것을 보여준다. 하지만 이는 거짓말쟁이 유형의 역설에 대한 직관주의적 접근법이 잘못된 것이 아니라 표준 자연연역 체계의 표현력이 부족한 문제라고 할 수 있다. 우리는 주어진 체계 S에 대한 메타-레벨 부정 연산자 ⊬$_s$와 메타-레벨 모순 연산자 ⋏를 직관주의 체계에 도입할 것이다. 그리고 체계의 완전성에 대한 가정 없이는 이 체계에서 ${\perp}$에 대한 추론을 얻을 수 없음을 보일 것이다. 또한 우리는 이중 메타-레벨 부정 제거규칙(DMNE)을 고려할 것이다. 이 규칙은 체계의 완전성을 암묵적으로 가정하며 DMNE에 대한 제약은 ${\perp}$의 추론을 막을 수 있을 것이다.