DOI QR코드

DOI QR Code

과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs)

  • 박현우 (LG전자 소재/생산기술원) ;
  • 차우병 ((주)플라즈마텍) ;
  • 엄성현 (고등기술연구원 플랜트엔지니어링센터)
  • Park, Hyun-Woo (Materials & Production engineering Research Institute, LG Electronics) ;
  • Cha, Woo Byoung (Plasma Technology Co. Ltd.) ;
  • Uhm, Sunghyun (Plan Engineering Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2017.12.18
  • 심사 : 2018.01.02
  • 발행 : 2018.02.10

초록

반도체 및 디스플레이 제조공정 중에 화학기상증착(CVD), 식각(etching), 세정(cleaning) 공정에서 배출되는 과불화합물(PFCs)를 포함한 폐 가스 처리를 위해서 POU (point of use) 가스 스크러버 시스템을 도입하여 사용하고 있다. 과불화합물은 지구온난화 지수(GWP, global warming potential)와 대기 중 자연분해되는 기간(lifetime)이 $CO_2$에 비해 수천 배 높은 온실가스로 분류되어 있으며, 과불화합물의 열분해를 위해서는 3,000 K 이상의 고온이 요구되는 것이 일반적이다. 이러한 특징 때문에 과불화합물을 효과적으로 제어하기 위한 방법으로 열플라즈마 기술을 도입하고자 하는 노력들이 진행되어 왔으며, POU 가스 스크러버 기술을 개발하여 산업적으로 이용하고자 하였다. 열플라즈마 기술은 플라즈마 토치 기술, 전원공급장치 기술 및 플라즈마 토치-전원공급장치 매칭 기술 최적화를 통해 안정적으로 플라즈마 발생원을 유지시키는 것이 중요하다. 또한, 과불화합물 고효율 처리를 위한 고온의 플라즈마와 폐 가스의 효과적인 혼합이 주요 기술요인으로 확인되었다. 본 논문에서는 반도체 및 디스플레이 공정 폐 가스 처리를 위한 후처리 공정에 대한 기술적 정보를 제공함과 동시에 POU 플라즈마 가스 스크러버에 대한 기술개발 동향을 파악함으로써 향후 연구개발이 요구되는 핵심사항에 대해 논의하고자 한다.

POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.

키워드

참고문헌

  1. M. B. Chang and J. S. Chang, Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: a critical review, Ind. Eng. Chem. Res., 45, 4101-4109 (2006).
  2. H. J. Lee and J. H. Lee, Waste minimization technology trends in semiconductor industries, Clean Technol., 4, 6-23 (1998).
  3. United Nation Framework Convention on Climate Change, https://unfccc.int/2860.php.
  4. J. H. Ko, S. Choi, H. W. Park, and D. W. Park, Decomposition of nitrogen trifluoride using low power arc plasma, Plasma Sci. Technol., 15, 923-927 (2013).
  5. S. Choi, D. W. Park, and T. Watanabe, Thermal plasma decomposition of fluorinated greenhouse gases, Nucl. Eng. Technol., 44, 21-32 (2012).
  6. H. W. Park, S. Choi, and D. W. Park, Effect of reaction gases on PFCs treatment using arc plasma process, Clean Technol., 19, 113-120 (2013).
  7. S. Choi, S. H. Hong, H. S. Lee, and T. Watanabe, A comparative study of air and nitrogen thermal plasmas for PFCs decomposition, Chem. Eng. J., 185-186, 193-200 (2012).
  8. B. A. Wofford, M. W. Jackson, C. Hartz, and J. W. Bevan, Surface wave plasma abatement of $CHF_3$ and $CF_4$ containing semiconductor process emissions, Environ. Sci. Technol., 33, 1892-1897 (1999).
  9. C. L. Hartz, J. W. Ban, M. W. Jackson, and B. A. Wofford, Innovative surface wave plasma reactor technique for PFC abatement, Environ. Sci. Technol., 32, 682-687 (1998).
  10. V. Mohindra, H. Chae, H. H. Sawin, and M. T. Mocella, Abatement of perfluorocompounds (PFCs) in a microwave tubular reactor using $O_2$ as an additive gas, IEEE Trans. Semicond. Manuf., 10, 399-411 (1997).
  11. T. Kuroki, J. Mine, S. Odahara, M. Okubo, T. Yamamoto, and N. Saeki, $CF_4$ decomposition of flue gas from semiconductor process using inductively coupled plasma, IEEE Trans. Ind. Appl., 41, 221-228 (2005).
  12. J. W. Sun and D. W. Park, $CF_4$ decomposition by thermal plasma processing, Korean J. Chem. Eng., 20, 476-781 (2003).
  13. C. H. Lee and Y. N. Chun, Development of a plasma waterjet scrubber for the reduction of PFCs, J. Korean Soc. Atmos. Environ., 26, 624-632 (2010).
  14. H. S. Uhm, Y. C. Hong, and D. H. Shin, A microwave plasma torch and its applications, Plasma Sources Sci. Technol., 15, 26-34 (2006).
  15. S. H. Han, H. W. Park, T. H. Kim, and D. W. Park, Large scale treatment of perfluorocompounds using a thermal plasma scrubber, Clean Technol., 17, 250-258 (2011).
  16. K. T. Kim, D. H. Lee, J. O. Lee, M. S. Cha, and Y. H. Song, $CF_4$ treatment characteristics using an elongated arc reactor, J. Korean Soc. Atmos. Environ., 26, 85-93 (2010).

피인용 문헌

  1. Numerical analysis of thermal plasma scrubber for CF4 decomposition vol.21, pp.6, 2019, https://doi.org/10.1088/2058-6272/aafbba
  2. Numerical and experimental analysis of thermal-flow characteristics in a pyrolysis reactor of a gas scrubber designed based on similitude theory vol.70, pp.5, 2020, https://doi.org/10.1080/10962247.2020.1738283
  3. Etching characteristics of thin SiON films using a liquefied perfluorocarbon precursor of C6F12O with a low global warming potential vol.22, pp.10, 2018, https://doi.org/10.1088/2058-6272/ab9b5a
  4. Numerical Analysis of Thermal Flow Characteristics Inside Waste Combustion Chamber with Multiple Thermal Plasma Jets vol.30, pp.6, 2018, https://doi.org/10.5757/asct.2021.30.6.172