DOI QR코드

DOI QR Code

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage

그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘

  • Park, So Hyun (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Shin, Hyuk Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Lee, Nan Hee (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Hong, In Kee (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 박소현 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 신혁수 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 이난희 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 홍인기 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터)
  • Received : 2017.09.18
  • Accepted : 2017.11.18
  • Published : 2018.02.10

Abstract

In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.

본 연구에서는 그라비올라의 주성분인 nicotiflorin을 분리하고 그 아글리콘 성분인 kaempferol을 얻어 세포 보호 효과 및 그 보호 메커니즘을 규명하였다. L-Ascorbic acid 및 (+)-${\alpha}$-tocopherol을 대조군으로 하여, $^1O_2$로 유도된 세포 손상에 대해 nicotiflorin 및 kaempferol의 보호 효과를 측정한 결과 nicotiflorin < (+)-${\alpha}$-tocopherol < kaempferol 순으로 보호 효과가 증가하였다. L-Ascorbic acid는 세포 보호 효과를 보이지 않았다. 이들의 세포 보호 효과 메커니즘을 밝히기 위해 singlet oxygen 소광 속도 상수, 자유라디칼 소거 활성, ROS 소거 활성 및 적혈구 세포 침투율을 측정하였다. 실험 결과, kaempferol과 그 배당체인 nicotiflorin의 세포 보호 효과에 있어서 큰 차이는 세포막에의 침투가 가장 큰 요인으로 확인되었다. 대조군 L-ascorbic acid가 항산화능은 크지만 실험 조건에서 세포막에 침투가 잘 안되어 세포 보호 효과가 나타나지 않은 것으로 확인되었다. Kaempferol과 (+)-${\alpha}$-tocopherol의 비교를 통해 세포 침투뿐만 아니라 라디칼 소거활성 및 ROS 소거 활성도 세포 보호 효과에 기여하는 것으로 나타났다. 결론적으로, 광증감 반응으로 유도된 세포막 파괴에 대한 보호작용은 항산화제들의 세포 침투, 자유라디칼 및 ROS 소거 활성이 큰 영향을 미치는 것으로 확인되었다.

Keywords

References

  1. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015).
  2. M. Yaar and B. A. Gilchrest, Photoageing: Mechanism, prevention and therapy, Br. J. Dermatol., 157, 874-887 (2007).
  3. H. J. Yang, E. H. Kim, and S. N. Park, Antioxidative activity and component analysis of Psidium guajava leaf extracts, J. Soc. Cosmet. Scientists Korea, 34, 233-244 (2008).
  4. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5, 415-418 (2000).
  5. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Sci. Korea, 23, 75-132 (1997).
  6. Y. Al-Nuaimi, M. J. Sherratt, and C. E. M. Griffiths, Skin health in older age, Maturitas, 79, 256-264 (2014).
  7. J. Wohlrab, K. Hilpert, and L. Wolff, Epidermal alternsprozesse and anti-aging strategies, Hautarzt, 67, 107-111 (2016).
  8. S. Valentina, M. Soren, M. Britta, B. Sascha, B. Alexander, B. Jurgen, and J. Marina, Aging of different avian cultured cells: Lack of ROS-induced damage and quality control mechanisms, Mech. Ageing Dev., 131, 48-59 (2010).
  9. L. G. Valle, Oxidative stress in aging: Theoretical outcomes and clinical evidences in humans, Biomed. Aging Pathol., 1, 1-7 (2011).
  10. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 160, 1-40 (2006).
  11. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35, 510-518 (2003).
  12. M. P. Montana, W. A. Massad, S. Criado, A. Biasutti, and N. A. Garcia, Stability of flavonoids in the presence of riboflavin-photogenerated reactive oxygen species: a kinetic and mechanistic study on quercetin, morin and rutin, Photochem. Photobiol., 86, 827-834 (2010).
  13. D. S. Lee, M. S. Lim, S. S. Kwan, S. Y. Kim, and S. N. Park, Antioxidative acitivity and componential analysis of Chamaecyparis obtusa leaf extract, Appl. Chem. Eng., 23, 93-99 (2012).
  14. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680-683 (2012).
  15. J. Yamakoshi, F. Otsuka, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, and Y. Kubota, Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin- rich extract from grape seeds, Pigment Cell Res., 16, 629-638 (2003).
  16. M. L. Circu and T. Y. Aw, Reactive oxygen species, cellular redox system, and apoptosis, Free Radic. Biol. Med., 48, 749-762 (2010).
  17. J. H. Ha, Y. J. Jeong, J. S. Seong, K. M. Kim, A. Y. Kim, M. M. Fu, J. Y. Suh, N. H. Lee, J. Park, and S. N. Park, Antioxidant and antibacterial activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) extracts obtained by various extract condition, J. Soc. Cosmet. Sci. Korea., 41, 361-373 (2015).
  18. S. H. Xuan, G. Y. Kim, J. Y. Yu, J. W. Kim, Y. R. Yang, Y. H. Jeon, Y. J. Jeong, A. R. Kim, and S. N. Park, Antioxidant and cellular protective effects against oxidative stress of Calendula officinalis flowers extracts in human skin cells, Appl. Chem. Eng., 27, 620-626 (2016).
  19. S. H. Xuan, A. R. Kim, Y. J. Jeong, and N. H. Lee, Antioxidant and cellular protective effects of Moringa oleifera leaves extract, J. Soc. Cosmet. Sci. Korea, 42, 217-226 (2016).
  20. E. H. Jo, I. H. Kim, and J. H. Lee, Antioxidant and skin whitening effect of graviola (Annona muricata) leaf extracts, Appl. Chem. Eng., 28, 198-205 (2017).
  21. Y. R. Son, E. H. Choi, G. T. Kim, T. S. Park, and S. M. Shim, Bioefficacy of graviola leaf extracts in scavenging free radicals and upregulating antioxidant genes, Food Funct., 7, 861-871 (2016).
  22. S. N. Park and T. N. Lee, Quenching effect of carotenoids on singlet oxygen, J. Soc. Cosmet. Sci. Korea, 10, 75-89 (1984).
  23. S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects, J. Ind. Eng. Chem., 20, 3046-3052 (2014).