DOI QR코드

DOI QR Code

Hydrogen peroxide inhibits Ca2+ efflux through plasma membrane Ca2+-ATPase in mouse parotid acinar cells

  • Kim, Min Jae (Department of Physiology, College of Medicine, Konyang University) ;
  • Choi, Kyung Jin (Department of Physiology, College of Medicine, Konyang University) ;
  • Yoon, Mi Na (Department of Physiology, College of Medicine, Konyang University) ;
  • Oh, Sang Hwan (Department of Dental Hygiene, College of Medical Science, Konyang University) ;
  • Kim, Dong Kwan (Department of Physiology, College of Medicine, Konyang University) ;
  • Kim, Se Hoon (Department of Physiology, College of Medicine, Konyang University) ;
  • Park, Hyung Seo (Department of Physiology, College of Medicine, Konyang University)
  • Received : 2017.11.09
  • Accepted : 2018.01.04
  • Published : 2018.03.01

Abstract

Intracellular $Ca^{2+}$ mobilization is closely linked with the initiation of salivary secretion in parotid acinar cells. Reactive oxygen species (ROS) are known to be related to a variety of oxidative stress-induced cellular disorders and believed to be involved in salivary impairments. In this study, we investigated the underlying mechanism of hydrogen peroxide ($H_2O_2$) on cytosolic $Ca^{2+}$ accumulation in mouse parotid acinar cells. Intracellular $Ca^{2+}$ levels were slowly elevated when $1mM\;H_2O_2$ was perfused in the presence of normal extracellular $Ca^{2+}$. In a $Ca^{2+}-free$ medium, $1mM\;H_2O_2$ still enhanced the intracellular $Ca^{2+}$ level. $Ca^{2+}$ entry tested using manganese quenching technique was not affected by perfusion of $1mM\;H_2O_2$. On the other hand, $10mM\;H_2O_2$ induced more rapid $Ca^{2+}$ accumulation and facilitated $Ca^{2+}$ entry from extracellular fluid. $Ca^{2+}$ refill into intracellular $Ca^{2+}$ store and inositol 1,4,5-trisphosphate ($1{\mu}M$)-induced $Ca^{2+}$ release from $Ca^{2+}$ store was not affected by $1mM\;H_2O_2$ in permeabilized cells. $Ca^{2+}$ efflux through plasma membrane $Ca^{2+}-ATPase$ (PMCA) was markedly blocked by $1mM\;H_2O_2$ in thapsigargin-treated intact acinar cells. Antioxidants, either catalase or dithiothreitol, completely protected $H_2O_2-induced$ $Ca^{2+}$ accumulation through PMCA inactivation. From the above results, we suggest that excessive production of $H_2O_2$ under pathological conditions may lead to cytosolic $Ca^{2+}$ accumulation and that the primary mechanism of $H_2O_2-induced$ $Ca^{2+}$ accumulation is likely to inhibit $Ca^{2+}$ efflux through PMCA rather than mobilize $Ca^{2+}$ ions from extracellular medium or intracellular stores in mouse parotid acinar cells.

Keywords

References

  1. Ambudkar IS. Calcium signalling in salivary gland physiology and dysfunction. J Physiol. 2016;594:2813-2824. https://doi.org/10.1113/JP271143
  2. Petersen OH. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992;448:1-51. https://doi.org/10.1113/jphysiol.1992.sp019028
  3. Fox PC. Acquired salivary dysfunction. Drugs and radiation. Ann N Y Acad Sci. 1998;842:132-137. https://doi.org/10.1111/j.1749-6632.1998.tb09641.x
  4. Abdollahi M, Fooladian F, Emami B, Zafari K, Bahreini-Moghadam A. Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum Exp Toxicol. 2003;22:587-592. https://doi.org/10.1191/0960327103ht399oa
  5. Acauan MD, Figueiredo MA, Cherubini K, Gomes AP, Salum FG. Radiotherapy-induced salivary dysfunction: Structural changes, pathogenetic mechanisms and therapies. Arch Oral Biol. 2015;60: 1802-1810. https://doi.org/10.1016/j.archoralbio.2015.09.014
  6. Yamada T, Ryo K, Tai Y, Tamaki Y, Inoue H, Mishima K, Tsubota K, Saito I. Evaluation of therapeutic effects of astaxanthin on impairments in salivary secretion. J Clin Biochem Nutr. 2010;47:130-137. https://doi.org/10.3164/jcbn.10-31
  7. Abedi SM, Yarmand F, Motallebnejad M, Seyedmajidi M, Moslemi D, Ashrafpour M, Bijani A, Moghadamnia A, Mardanshahi A, Hosseinimehr SJ. Vitamin E protects salivary glands dysfunction induced by ionizing radiation in rats. Arch Oral Biol. 2015;60:1403-1409. https://doi.org/10.1016/j.archoralbio.2015.06.003
  8. Ryo K, Yamada H, Nakagawa Y, Tai Y, Obara K, Inoue H, Mishima K, Saito I. Possible involvement of oxidative stress in salivary gland of patients with Sjogren's syndrome. Pathobiology. 2006;73:252-260. https://doi.org/10.1159/000098211
  9. Pagano G, Castello G, Pallardo FV. Sjogren's syndrome-associated oxidative stress and mitochondrial dysfunction: prospects for chemoprevention trials. Free Radic Res. 2013;47:71-73. https://doi.org/10.3109/10715762.2012.748904
  10. Gardner AM, Xu FH, Fady C, Jacoby FJ, Duffey DC, Tu Y, Lichtenstein A. Apoptotic vs. nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic Biol Med. 1997;22:73-83. https://doi.org/10.1016/S0891-5849(96)00235-3
  11. Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998;75:199-212. https://doi.org/10.1007/s11746-998-0032-9
  12. Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol. 1998;275:C1-24. https://doi.org/10.1152/ajpcell.1998.275.1.C1
  13. Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium. 2016;60:108-114. https://doi.org/10.1016/j.ceca.2016.03.004
  14. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74:139-162. https://doi.org/10.1152/physrev.1994.74.1.139
  15. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95. https://doi.org/10.1152/physrev.00018.2001
  16. Roveri A, Coassin M, Maiorino M, Zamburlini A, van Amsterdam FT, Ratti E, Ursini F. Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch Biochem Biophys. 1992;297: 265-270. https://doi.org/10.1016/0003-9861(92)90671-I
  17. Gen W, Tani M, Takeshita J, Ebihara Y, Tamaki K. Mechanisms of $Ca^{2+}$ overload induced by extracellular $H_2O_2$ in quiescent isolated rat cardiomyocytes. Basic Res Cardiol. 2001;96:623-629. https://doi.org/10.1007/s003950170014
  18. Sun L, Yau HY, Lau OC, Huang Y, Yao X. Effect of hydrogen peroxide and superoxide anions on cytosolic $Ca^{2+}$: comparison of endothelial cells from large-sized and small-sized arteries. PLoS One. 2011;6:e25432. https://doi.org/10.1371/journal.pone.0025432
  19. Giambelluca MS, Gende OA. Hydrogen peroxide activates calcium influx in human neutrophils. Mol Cell Biochem. 2008;309:151-156. https://doi.org/10.1007/s11010-007-9653-9
  20. Liu X, Cotrim A, Teos L, Zheng C, Swaim W, Mitchell J, Mori Y, Ambudkar I. Loss of TRPM2 function protects against irradiationinduced salivary gland dysfunction. Nat Commun. 2013;4:1515. https://doi.org/10.1038/ncomms2526
  21. Kozai D, Ogawa N, Mori Y. Redox regulation of transient receptor potential channels. Antioxid Redox Signal. 2014;21:971-986. https://doi.org/10.1089/ars.2013.5616
  22. Santiago E, Climent B, Munoz M, Garcia-Sacristan A, Rivera L, Prieto D. Hydrogen peroxide activates store-operated $Ca^{2+}$ entry in coronary arteries. Br J Pharmacol. 2015;172:5318-5332. https://doi.org/10.1111/bph.13322
  23. Zaidi A, Barron L, Sharov VS, Schoneich C, Michaelis EK, Michaelis ML. Oxidative inactivation of purified plasma membrane $Ca^{2+}$-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry. 2003;42:12001-12010. https://doi.org/10.1021/bi034565u
  24. Bruce JI, Elliott AC. Oxidant-impaired intracellular $Ca^{2+}$ signaling in pancreatic acinar cells: role of the plasma membrane $Ca^{2+}$-ATPase. Am J Physiol Cell Physiol. 2007;293:C938-950.
  25. Yoon MN, Kim DK, Kim SH, Park HS. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells. Korean J Physiol Pharmacol. 2017;21:233-239. https://doi.org/10.4196/kjpp.2017.21.2.233
  26. Park HS, Betzenhauser MJ, Zhang Y, Yule DI. Regulation of $Ca^{2+}$ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells. Am J Physiol Gastrointest Liver Physiol. 2012;302:G97-104. https://doi.org/10.1152/ajpgi.00328.2011
  27. Choi KJ, Kim KS, Kim SH, Kim DK, Park HS. Caffeine and 2-aminoethoxydiphenyl borate (2-APB) have different ability to inhibit intracellular calcium mobilization in pancreatic acinar cell. Korean J Physiol Pharmacol. 2010;14:105-111. https://doi.org/10.4196/kjpp.2010.14.2.105
  28. Gallacher DV, Petersen OH. Stimulus-secretion coupling in mammalian salivary glands. Int Rev Physiol. 1983;28:1-52.
  29. Yule DI, Straub SV, Bruce JI. Modulation of $Ca^{2+}$ oscillations by phosphorylation of Ins(1,4,5)$P_3$ receptors. Biochem Soc Trans. 2003; 31:954-957. https://doi.org/10.1042/bst0310954
  30. Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol. 2005;67:445-469. https://doi.org/10.1146/annurev.physiol.67.041703.084745
  31. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529.
  32. Won JH, Cottrell WJ, Foster TH, Yule DI. $Ca^{2+}$ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1166-1177. https://doi.org/10.1152/ajpgi.00352.2007
  33. Clapham DE. Calcium signaling. Cell. 2007;131:1047-1058. https://doi.org/10.1016/j.cell.2007.11.028
  34. Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium. 2014;55:282-289. https://doi.org/10.1016/j.ceca.2014.01.003
  35. Pariente JA, Camello C, Camello PJ, Salido GM. Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol. 2001;179:27-35. https://doi.org/10.1007/s002320010034
  36. Baggaley EM, Elliott AC, Bruce JI. Oxidant-induced inhibition of the plasma membrane $Ca^{2+}$-ATPase in pancreatic acinar cells: role of the mitochondria. Am J Physiol Cell Physiol. 2008;295:C1247-1260. https://doi.org/10.1152/ajpcell.00083.2008
  37. Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A. Plasma membrane $Ca^{2+}$ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci. 2007;1099:226-236. https://doi.org/10.1196/annals.1387.023
  38. Bellomo G, Mirabelli F, Richelmi P, Orrenius S. Critical role of sulfhydryl group(s) in ATP-dependent $Ca^{2+}$ sequestration by the plasma membrane fraction from rat liver. FEBS Lett. 1983;163:136-139. https://doi.org/10.1016/0014-5793(83)81180-6
  39. Zaidi A, Barron L, Sharov VS, Schoneich C, Michaelis EK, Michaelis ML. Oxidative inactivation of purified plasma membrane $Ca^{2+}$-ATPase by hydrogen peroxide and protection by calmodulin. Biochemistry. 2003;42:12001-12010. https://doi.org/10.1021/bi034565u
  40. Pengpanichpakdee N, Thadtapong T, Auparakkitanon S, Wilairat P. Plasma membrane $Ca^{2+}$-ATPase sulfhydryl modifications: implication for oxidized red cell. Southeast Asian J Trop Med Public Health. 2012;43:1252-1257.
  41. Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001;81:21-50. https://doi.org/10.1152/physrev.2001.81.1.21
  42. Grover AK, Samson SE, Misquitta CM. Sarco(endo)plasmic reticulum $Ca^{2+}$ pump isoform SERCA3 is more resistant than SERCA2b to peroxide. Am J Physiol. 1997;273:C420-425. https://doi.org/10.1152/ajpcell.1997.273.2.C420
  43. Barnes KA, Samson SE, Grover AK. Sarco/endoplasmic reticulum $Ca^{2+}$-pump isoform SERCA3a is more resistant to superoxide damage than SERCA2b. Mol Cell Biochem. 2000;203:17-21. https://doi.org/10.1023/A:1007053802481
  44. Yin D, Kuczera K, Squier TC. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by $H_2O_2$ modulates the ability to activate the plasma membrane Ca-ATPase. Chem Res Toxicol. 2000;13:103-110. https://doi.org/10.1021/tx990142a
  45. Baggaley E, McLarnon S, Demeter I, Varga G, Bruce JI. Differential regulation of the apical plasma membrane $Ca^{2+}$-ATPase by protein kinase A in parotid acinar cells. J Biol Chem. 2007;282:37678-37693. https://doi.org/10.1074/jbc.M703416200
  46. Belan PV, Gerasimenko OV, Tepikin AV, Petersen OH. Localization of $Ca^{2+}$ extrusion sites in pancreatic acinar cells. J Biol Chem. 1996;271:7615-7619. https://doi.org/10.1074/jbc.271.13.7615
  47. Lee MG, Xu X, Zeng W, Diaz J, Kuo TH, Wuytack F, Racymaekers L, Muallem S. Polarized expression of $Ca^{2+}$ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of $[Ca^{2+}]_i$ waves. J Biol Chem. 1997;272:15771-15776. https://doi.org/10.1074/jbc.272.25.15771