DOI QR코드

DOI QR Code

Optical Characterization of Cubic and Pseudo-cubic Phase Perovskite Single Crystals Depending on Laser Irradiation Time

  • Received : 2018.03.28
  • Accepted : 2018.03.30
  • Published : 2018.03.31

Abstract

Photovoltaic and optoelectronic devices based on hybrid metal halide perovskites ($MAPbX_3$; $MA=CH_3NH_3{^+}$, $X=Cl^-$, $Br^-$, or $I^-$) are rapidly improving in power conversion efficiency. Also, during recent years, perovskite single crystals have emerged as promising materials for high-efficiency photovoltaic and optoelectronic devices because of their low defect density. Here we show that the light soaking effect of mixed halide perovskite ($MAPbBr_{3-x}I_x$) single crystals can be explained using photoluminescence, time-resolved photoluminescence, and Raman scattering measurements. Unlike Br-based single crystal, Br/I mixed single crystal show a strong light soaking effect under laser irradiation condition that was related to the existence of multiple phases.

Keywords

References

  1. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photon. 8, 506-514 (2014). https://doi.org/10.1038/nphoton.2014.134
  2. M. B. Johnston and L. M. Herz, Acc. Chem. Res. 49, 146-154 (2016). https://doi.org/10.1021/acs.accounts.5b00411
  3. N. G. Park, M. Gratzel, and T Miyasaka, Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals To Device Architectures (Springer International Publishing, Switzerland, 2016), pp. 1-17.
  4. NREL Research Cell Record Efficiency Chart. https://www.nrel. gov/pv/assets/images/efficiency-chart.png (Accessed on 18 July2017).
  5. M. A. Green, K. emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, and A. Ho-Baillie, Prog. Photo. Res. Appl. 25, 3-13 (2017). https://doi.org/10.1002/pip.2855
  6. Y. H. Shao, Z. G. Xiao, C. Bi, Y. B. Yuan, and J. S. Huang, Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
  7. Q. Wang, Y. C. Shao, Q. F. Dong, Z. G. Xiao, Y. B. Yuan, and J. S. Huang, Energy Environ. Sci. 7, 2359-2365 (2014). https://doi.org/10.1039/C4EE00233D
  8. Z. T. Wu, Z. Z. Luo, Y. T. Shen, W. W. Zhao, W. H. Wang, H. Y. Nan, X. T. Guo, L. T. Sun, X. R. Wang, Y. M. You, and Z. H. Ni, Nano Res. 9, 3622-3631 (2016). https://doi.org/10.1007/s12274-016-1232-5
  9. Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang, Science, 347, 967-970 (2015). https://doi.org/10.1126/science.aaa5760
  10. M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. F. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, and O. M. Bakr, Nat. Commun. 6, 7586 (2015). https://doi.org/10.1038/ncomms8586
  11. Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, and J. S. Huang, Nat. Photonics, 9, 679 (2015). https://doi.org/10.1038/nphoton.2015.156
  12. C. Zhao, B. B. Chen, X. F. Qiao, L. Luan, K. Lu, and B. Hu, Adv. Energy. Mater. 5, 150029 (2015).
  13. S. J. Yoon, S. Draguta, J. S. Manser, O. Sharia, W. F. Schneider, M. Kuno, and P. V. Kamat, Acs. Energy. Lett. 1, 290-296 (2016). https://doi.org/10.1021/acsenergylett.6b00158
  14. R. Gottesman, L. Gouda, B. S. Kalanoor, E. Haltzi, S. Tirosh, E. Rosh-Hodesh, Y. Tischler, A. Zaban, C. Quarti, E. Mosconi, and F. J. De Angelis, Phys. Chem. Lett. 6, 2332-2338 (2015). https://doi.org/10.1021/acs.jpclett.5b00994
  15. D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. sargent, and O. M. Bakr, Science, 347, 519-522 (2015). https://doi.org/10.1126/science.aaa2725
  16. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019-9038 (2013). https://doi.org/10.1021/ic401215x
  17. Y. Y. Dang, Y. Liu, Y. X. Sun, D. S. Yuan, X. L. Liu, W. Q. Lu, G. F. Liu, H. B. Xia, and X. T. Tao, Cryst. Eng. Comm. 17, 665-670 (2015). https://doi.org/10.1039/C4CE02106A
  18. T. Baikie, Y. N. Fang, J. M Kadro, M. Schreyer, F. X. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A, 1, 5628-5641 (2013). https://doi.org/10.1039/c3ta10518k
  19. M. I. Saidaminov, A. L. Abdelhady, G. Maculan, and O. M. Bakr, Chem. Commun. 51, 17658-17661 (2015). https://doi.org/10.1039/C5CC06916E
  20. A. Sadhanala, F. Deschler, T. H. Thomas, S. E. Dutton, K. C. Goedel, F. C. Hanusch, M. L. Lai, U. steiner, T. Bein, P. Docampo, D. Cahen, and R. H. Friend, J. Phys. Chem. Lett. 5, 2501-2505 (2014). https://doi.org/10.1021/jz501332v
  21. P. U. Jepsen, W. Schairer, I. H. Libon, U. Lemmer, N. E. Hecker, M. Birkholz, K. Lips, and M. Schall, Appl. Phys. Lett. 79, 1291-1293 (2001). https://doi.org/10.1063/1.1394953
  22. H. R. Byun, D. Y. Park, H. M. Oh, G. Namkoong, and M. S. Jeong, ACS Photonics, 4, 2813-2820 (2017). https://doi.org/10.1021/acsphotonics.7b00797