DOI QR코드

DOI QR Code

Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst

Co/HY 제올라이트 촉매상에서 Bicyclo[2.2.1]hepta-2,5-diene 이량화를 통한 고에너지밀도 연료 제조

  • Kim, Jongjin (Department of Chemical Engineering, Kongju National University) ;
  • Shim, Beomseok (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Gayoung (Department of Chemical Engineering, Kongju National University) ;
  • Han, Jeongsik (Agency for Defense Development) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2017.11.22
  • Accepted : 2017.12.28
  • Published : 2018.04.10

Abstract

The dimer of bicyclo [2.2.1] hepta-2,5-diene (norbornadiene) can be used as a high-energy-density fuel. The purpose of this study is to investigate the effect of Co loading on the acid properties of HY zeolite catalyst and the catalytic activity in norbornadiene dimerization. When the cobalt was loaded on the HY zeolite catalyst, the amount of acid sites did not change, but the acid strength weakened. This can be attributed to the decrease in $Br{\ddot{o}}nsted$ acid site and the increase in Lewis acid site. The norbornadiene conversion and yield of norbornadiene dimer over the Co/HY catalyst showed higher than those over the HY zeolite catalyst. The higher activity of the Co/HY catalyst can be ascribed to the higher amount of Lewis acid sites over the Co/HY catalyst. Density and calorific values of the norbornadiene dimer prepared by using the Co/HY catalyst agreed well with the known values in the literature. It was confirmed that the norbornadiene dimer prepared in this study can be used as a high-energy-density fuel.

Bicyclo[2.2.1]hepta-2,5-diene (norbornadiene)의 이량체는 고에너지밀도 연료로 사용 가능하다. 본 연구의 목적은 Co 담지가 HY 제올라이트 촉매의 산특성에 미치는 영향과 norbornadiene의 이량화 반응에 미치는 영향을 고찰하는 것이다. HY 제올라이트 촉매에 코발트를 담지하면 산점의 양은 큰 변화가 없으나 산 세기는 약해졌다. 이는 $Br{\ddot{o}}nsted$산의 감소와 Lewis산의 증가에 기인한 것으로 볼 수 있다. HY 제올라이트와 Co/HY를 촉매로 사용하여 norbornadiene 이량화 반응을 수행한 결과, Co/HY 촉매는 HY 제올라이트 촉매보다 더 높은 norbornadiene 전환율과 norbornadiene 이량체수율을 나타내었다. Norbornadiene 이량화 반응에서 Co/HY 촉매의 활성이 HY 촉매보다 더 높은 것은 Lewis 산점의 역할이 더 크기 때문으로 해석할 수 있다. Co/HY 촉매를 이용하여 제조한 norbornadiene 이량체의 밀도와 발열량이 문헌에 알려진 값과 잘 일치하며, 본 연구에서 제조한 norbornadiene 이량체가 고에너지밀도 연료로서 사용 가능하다는 것을 확인하였다.

Keywords

References

  1. J. J. Zou, Y. Xu, X. Zhang, and L. Wang, Isomerization of endo-dicyclopentadiene using Al-grafted MCM-41, Appl. Catal. A, 421-422, 79-85 (2012). https://doi.org/10.1016/j.apcata.2012.01.035
  2. E. Dalk and A. Dastan, Synthesis of cyclopentadiene derivatives by retro-Diels-Alder reaction of norbornadiene derivates. Tetrahedron, 71, 1966-1970 (2015). https://doi.org/10.1016/j.tet.2015.02.023
  3. B. H. Jeong and J. S. Han, Preparation of polycyclic hydrocarbon compounds by dimerization reaction of norbornadiene, J. Korean Soc. Propulsion Eng., 5, 190-193 (2007).
  4. E. Xing, Z. Mi, C. Xin, L. Wang, and X. Zhang, Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites, J. Mol. Catal. A, 231, 161-167 (2005). https://doi.org/10.1016/j.molcata.2005.01.015
  5. Y. Li, J. J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010). https://doi.org/10.1016/j.fuel.2009.11.020
  6. N. M. Dao, Water-assisted selective methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate, MS Thesis, Kyung Hee University, Seoul, Korea (2008).
  7. M. D. Nguyen, L. V. Nguyen, J. S Lee, J. S Han, B. H. Jeong, M. S. Cheong, H. S. Kim, and H. J. Kang, Promoting effect of $AlCl_3$ on the Fe-catalyzed dimerization of bicyclo[2.2.1]hepta-2,5-diene, Bull. Korean Chem. Soc., 29, 1364-1368 (2008). https://doi.org/10.5012/bkcs.2008.29.7.1364
  8. Y. Wu, Y. Xue, and C. K. Kim, Computational studies on the dimers and the thermal dimerization of norbornadiene, J. Comput. Chem., 29, 1250-1258 (2007).
  9. G. Zoche, Dimerization Process, US Patent 3,377,398 (1966).
  10. A. Schneider, H. K. Myers, and G. Suld, Dimerization of norbornadiene to a mixture of exo-endo and endo-endo hexacyclic dimers, US Patent 4,275,254 (1981).
  11. Y. Watanabe, T. Mitsudo, and S. W. Zhang, Pentacyclic hydrocarbon compound and halogenated pentacyclic hydrocarbon compound, and preparation processes thereof, US Patent 5,608,131 (1995).
  12. M. D. Nguyen, L. V. Nguyen, E. H. Jeon, J. H. Kim, M. Cheong, H. S Kim, and J. S. Lee, Fe-containing ionic liquids as catalysts for the dimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Catal., 258, 5-13 (2008). https://doi.org/10.1016/j.jcat.2008.05.008
  13. N. F. Goldshleger, B. L. Azbel, Y. L. Isakov, E. S. Shpiro, and K. M. Minachev, Cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene in the presence of rhodium containing zeolite catalysts, Stud. Surf. Sci. Catal., 105, 1235-1242 (1997).
  14. N. F. Gol'dshleger, B. L. Azbel, Y. L. Isakov, E. S. Shpiro, and K. M. Minachev, Selective rhodium-containing zeolite catalysts for cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Mol. Catal. A, 106, 159-168 (1996). https://doi.org/10.1016/1381-1169(95)00255-3
  15. H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent delopments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999). https://doi.org/10.1021/ef980195k
  16. B. H. Jeong, J. Han, J. K. Jeon, E. Park, and K. Jeong, Method for preparing norbornadiene dimer using heterogeneous catalyst, Korea Patent 10-1616071 (2016).
  17. K. Jeong, J. Kim, J. Han, B. Jeong, and J. K. Jeon, Dimerization of bicyclo[2.2.1.]hepta-2,5-diene over various zeolite catalysts, Top. Catal., 60, 743-749 (2017). https://doi.org/10.1007/s11244-017-0780-6
  18. K. Jeong, J. Kim, J. Han, B. Jeong, and J. K. Jeon, Synthesis of high-energy-density fuel through the dimerization of bicyclo [2.2.1]hepta-2,5-diene over a nanoporous catalyst, J. Nanosci. Nanotechnol., 17, 8255-8259 (2017). https://doi.org/10.1166/jnn.2017.15097
  19. M. Niwa and N. Katada, New method for the temperature programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review, Chem. Rec., 13, 432-455 (2013). https://doi.org/10.1002/tcr.201300009
  20. W. E. Farneth and R. J. Gorte, Methods for characterizing zeolite acidity, Chemical Rev., 95, 615-635 (1995). https://doi.org/10.1021/cr00035a007
  21. E. O. Lee, S. Y. Yun, Y. K. Park, S. Y. Jeong, J. S. Han, and J. K. Jeon, Selctive hydroisomerization of n-dodecane over platinum supported on SAPO-11, J. Ind. Eng. Chem., 20, 775-780 (2014). https://doi.org/10.1016/j.jiec.2013.06.006
  22. B. Chakraborty and B. Viswanathan, Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption, Catal Today, 49, 253-260 (1999). https://doi.org/10.1016/S0920-5861(98)00431-3
  23. G. T. Palomino, J. J. C. Pascual, M. R. Delgado, J. B. Parra, and C. O. Arean, FT-IR studies on the acidity of gallium-substituted mesoporous MCM-41 silica, Mater. Chem. Phys., 85, 145-150 (2004). https://doi.org/10.1016/j.matchemphys.2003.12.020
  24. M. I. Zaki, M. A. Hasan, F. A. Al-Sagheer, and L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on $SiO_2-Al_2O_3$, $TiO_2$, $ZrO_2$ and $CeO_2$: general considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids Surf. A, 190, 261-274 (2001). https://doi.org/10.1016/S0927-7757(01)00690-2
  25. J. Kim, J. Han, T. S. Kwon, Y. K. Park, and J. K. Jeon, Oligomerization and isomerization of dicyclopentadiene over mesoporous materials produced from zeolite beta, Catal. Today, 232, 69-74 (2014). https://doi.org/10.1016/j.cattod.2014.02.004
  26. K. Y. Kwak, M. S. Kim. D. W. Lee, Y. H. Cho, J. Han, T. S. Kwon, and K. Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014). https://doi.org/10.1016/j.fuel.2014.07.095