DOI QR코드

DOI QR Code

Catalytic Pyrolysis of Waste Paper Cup Containing Coffee Residuals

커피 잔류물을 함유한 폐종이컵의 촉매 열분해

  • Received : 2018.01.16
  • Accepted : 2018.02.09
  • Published : 2018.04.10

Abstract

Catalytic pyrolysis of the waste paper cup containing coffee residual (WPCCCR) was performed using a fixed bed reactor and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). Non-catalytic pyrolysis of WPCCCR produced a large amount of oil together with gas and char. The use of both HZSM-5 and HY decreased the yields of oil and increased the yield of gas due to the additional catalytic cracking. Owing to the acidic catalytic properties of HZSM-5 and HY, catalytic Py-GC/MS analysis of WPCCCR increased the selectivity to aromatic hydrocarbons in product oil. Owing to properties of HZSM-5 having a stronger acidity and medium pore size, the catalytic pyrolysis of WPCCR over HZSM-5 produced much larger amounts of aromatic hydrocarbons than that of using HY.

고정층 반응기와 파이롤라이저-가스크로마토그래피/질량분석기를 이용하여 커피 잔류물이 함유된 폐종이컵의 열분해 및 촉매 열분해를 진행하였다. 커피 잔류물이 함유된 종이컵의 무촉매 열분해에서는 많은 양의 오일이 가스 및 촤와 함께 형성되었다. HZSM-5와 HY 촉매의 사용에 따른 추가적인 분해 반응에 의해 오일의 양은 줄고 가스의 양은 증가하였다. HZSM-5와 HY의 산촉매 특성 때문에 커피 잔류물이 함유된 종이컵의 촉매 파이롤라이저-가스크로마토그래피/질량분석기 분석은 생성오일 중 방향족 화합물의 선택도를 증가시켰다. HY보다 강한 산세기와 중간 기공을 가진 HZSM-5의 특성으로 인해, HZSM-5상에서 커피 잔류물이 함유된 종이컵을 촉매 열분해한 경우 HY를 사용한 경우보다 휠씬 더 많은 양의 방향족 화합물이 생성되었다.

Keywords

References

  1. S. S. Sawant, B. K. Salunke, T. K. Tran, and B. S. Kim, Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates, Korean J. Chem. Eng., 33, 1505-1513 (2016). https://doi.org/10.1007/s11814-016-0019-4
  2. H. Shafaghat, P. S. Rezaei, D. Ro, J. Jae, B. S. Kim, S. C. Jung, B. H. Sung, and Y. K. Park, In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer, J. Ind. Eng. Chem., 54, 447-453 (2017). https://doi.org/10.1016/j.jiec.2017.06.026
  3. Y. M. Kim, T. U. Han, B. Hwang, B. Lee, H. W. Lee, Y. K. Park, and S. Kim, Pyrolysis kinetics and product properties of softwoods, hardwoods, and the nut shell of softwood, Korean J. Chem. Eng., 33, 2350-2358 (2016). https://doi.org/10.1007/s11814-016-0142-2
  4. Y. M. Kim, B. Lee, T. U. Han, S. Kim, T. U. Yu, B. Y. Bang, J. S. Kim, and Y. K. Park, Research on pyrolysis properties of waste plastic films, Appl. Chem. Eng., 28, 23-28 (2017).
  5. Y. M. Kim, B. S. Kim, K. S. Chea, T. S. Jo, S. Kim, and Y. K. Park, Ex-situ catalytic pyrolysis of Korean native oak tree over microporous zeolites, Appl. Chem. Eng., 27, 407-414 (2016). https://doi.org/10.14478/ace.2016.1051
  6. H. Lee, Y. M. Kim, I. G. Lee, J. K. Jeon, S. C. Jung, J. D. Chung, W. G. Choi, and Y. K. Park, Recent advances in the catalytic hydrodeoxygenation of bio-oil, Korean J. Chem. Eng., 33, 3299-3315 (2016). https://doi.org/10.1007/s11814-016-0214-3
  7. H. W. Lee, Y. M. Kim, J. Jae, B. H. Sung, S. C. jung, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natual zeolite and ex-situ HZSM-5, J. Anal. Appl. Pyrolysis, 122, 282-288 (2016). https://doi.org/10.1016/j.jaap.2016.09.015
  8. T. U. Han, Y. M. Kim, A. Watanabe, N. Teramae, Y. K. Park, and S. Kim, Pyrolysis kinetic analysis of poly(methyl methacrylate) using evolved gas analysis spectrometry, Korean J. Chem. Eng., 34, 1214-1221 (2017). https://doi.org/10.1007/s11814-016-0354-5
  9. B. S. Kim, Y. M. Kim, J. Jae, C. Watanabe, S. Kim, S. C. Jung, and Y. K. Park, Pyrolysis and catalytic upgrading of Citrus unshiu peel, Bioresour. Technol., 194, 312-319 (2015). https://doi.org/10.1016/j.biortech.2015.07.035
  10. B. S. Kim, Y. M. Kim, H. W. Lee, J. Jae, D. H. Kim, S. C. Jung, C. Watanabe, and Y. K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustain. Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381
  11. Y. M. Kim, G. H. Rhee, C. H. Ko, T. U. Han, S. Kim, S. C. Kim, and Y. K. Park, Catalytic pyrolysis of Korean pine (Pinus koraiensis) nut shell over mesoporous $Al_2O_3$, J. Nanosci. Nanotechnol., 18, 1351-2355 (2018). https://doi.org/10.1166/jnn.2018.14924
  12. Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41, Energy Convers. Manag., 149, 966-973 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
  13. L. Chai, C. C. Saffron, Y. Yang, Z. Zhang, R. W. Munro, and R. M. Kriegel, Integration of decentralized torrefaction with centralized catalytic pyrolysis to produce green aromatics from coffee grounds, Bioresour. Technol., 201, 287-292 (2016). https://doi.org/10.1016/j.biortech.2015.11.065
  14. Y. M. Kim, H. W. Lee, J. Jae, K. B. Jung, S. C. Jung, A. Watanabe, and Y. K. Park, Catalytic co-pyrolysis of biomass carbohydrates with LLDPE over Al-SBA-15 and mesoporous ZSM-5, Catal. Today, 298, 46-52 (2017). https://doi.org/10.1016/j.cattod.2017.06.006
  15. P. S. Rezaei, D. Oh, Y. Jong, Y. M. Kim, J. Jae, S. C. Jung, J. K. Jeon, and Y. K. Park, In-situ catalytic co-pyrolysis of yellow poplar and high-density polyethylene over mesoporous catalysts, Energy Convers. Manag., 151, 116-122 (2017). https://doi.org/10.1016/j.enconman.2017.08.073

Cited by

  1. Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root vol.29, pp.4, 2018, https://doi.org/10.14478/ace.2018.1068
  2. Catalytic Pyrolysis of Waste Polyethylene Terephthalate over Waste Concrete vol.30, pp.6, 2018, https://doi.org/10.14478/ace.2019.1084