DOI QR코드

DOI QR Code

Echinacoside, an active constituent of Herba Cistanche, suppresses epileptiform activity in hippocampal CA3 pyramidal neurons

  • Lu, Cheng-Wei (Department of Anesthesiology, Far-Eastern Memorial Hospital) ;
  • Huang, Shu-Kuei (Department of Anesthesiology, Far-Eastern Memorial Hospital) ;
  • Lin, Tzu-Yu (Department of Anesthesiology, Far-Eastern Memorial Hospital) ;
  • Wang, Su-Jane (School of Medicine, Fu Jen Catholic University)
  • Received : 2017.02.10
  • Accepted : 2017.10.27
  • Published : 2018.05.01

Abstract

Echinacoside, an active compound in the herb Herba Cistanche, has been reported to inhibit glutamate release. In this study, we investigated the effects of echinacoside on spontaneous excitatory synaptic transmission changes induced by 4-aminopyridine (4-AP), by using the in vitro rat hippocampal slice technique and whole-cell patch clamp recordings from CA3 pyramidal neurons. Perfusion with echinacoside significantly suppressed the 4-AP-induced epileptiform activity in a concentration-dependent manner. Echinacoside reduced 4-AP-induced increase in frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but it did not affect the amplitude of sEPSCs or glutamate-activated currents, implicating a presynaptic mechanism of action. Echinacoside also potently blocked sustained repetitive firing, which is a basic mechanism of antiepileptic drugs. These results suggest that echinacoside exerts an antiepileptic effect on hippocampal CA3 pyramidal neurons by simultaneously decreasing glutamate release and blocking abnormal firing synchronization. Accordingly, our study provides experimental evidence that echinacoside may represent an effective pharmacological agent for treating epilepsy.

Keywords

References

  1. Brodie MJ, French JA. Management of epilepsy in adolescents and adults. Lancet. 2000;356:323-329. https://doi.org/10.1016/S0140-6736(00)02515-0
  2. Patsalos PN. New antiepileptic drugs. Ann Clin Biochem. 1999;36:10-19. https://doi.org/10.1177/000456329903600102
  3. Loscher W. Animal models of drug-resistant epilepsy. Novartis Found Symp. 2002;243:149-159.
  4. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci . 2004;5:553-564. https://doi.org/10.1038/nrn1430
  5. Sasaki K, Hatta S, Wada K, Ohshika H, Haga M. Anticonvulsant activity of bilobalide, a sesquiterpene in Ginkgo biloba L. leaves against chemical-induced and electroshock-induced convulsions in mice. Res Commun Biol Psychol Psychiatry. 1995;20:145-156.
  6. Grunze H, Langosch J, von Loewenich C, Walden J. Modulation of neural cell membrane conductance by the herbal anxiolytic and antiepileptic drug aswal. Neuropsychobiology. 2000;42 Suppl 1:28-32. https://doi.org/10.1159/000054849
  7. Tu PF, Wang B, Deyama T, Zhang ZG, Lou ZC. Analysis of phenylethanoid glycosides of Herba cistanchis by RP-HPLC. Yao Xue Xue Bao. 1997;32:294-300.
  8. Zhao LX, Zhang CL, Zhao JX. Experience of WANG Guo-san in treating epilepsy. China J Tradit Chin Med Pharm. 2011;6:25.
  9. Wang F, Wang WK. Chinese medicinal composition for treating epilepsy and preparation method thereof. Chinese Patent CN 101797352 B. 2011. Jul 27.
  10. Zhu M, Lu C, Li W. Transient exposure to echinacoside is sufficient to activate Trk signaling and protect neuronal cells from rotenone. J Neurochem. 2013;124:571-580. https://doi.org/10.1111/jnc.12103
  11. Wu CR, Lin HC, Su MH. Reversal by aqueous extracts of Cistanche tubulosa from behavioral deficits in Alzheimer's disease-like rat model: relevance for amyloid deposition and central neurotransmitter function. BMC Complement Altern Med. 2014;14:202. https://doi.org/10.1186/1472-6882-14-202
  12. Zhao Q, Gao J, Li W, Cai D. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson's disease. Brain Res. 2010;1346:224-236. https://doi.org/10.1016/j.brainres.2010.05.018
  13. Lu CW, Lin TY, Huang SK, Wang SJ. Echinacoside inhibits glutamate release by suppressing voltage-dependent $Ca^{2+}$ entry and protein kinase C in rat cerebrocortical nerve terminals. Int J Mol Sci. 2016;17:E1006. https://doi.org/10.3390/ijms17071006
  14. Lason W, Chlebicka M, Rejdak K. Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacol Rep. 2013;65:787-801. https://doi.org/10.1016/S1734-1140(13)71060-0
  15. Voskuyl RA, Albus H. Spontaneous epileptiform discharges in hippocampal slices induced by 4-aminopyridine. Brain Res. 1985;342:54-66. https://doi.org/10.1016/0006-8993(85)91352-6
  16. Martin ED, Pozo MA. Valproate reduced synaptic activity increase induced by 4-aminopyridine at the hippocampal CA3-CA1 synapse. Epilepsia. 2004;45:436-440. https://doi.org/10.1111/j.0013-9580.2004.58303.x
  17. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia. 1999;40:1471-1483. https://doi.org/10.1111/j.1528-1157.1999.tb02029.x
  18. DeLorenzo RJ, Sombati S, Coulter DA. Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia. 2000;41 Suppl 1:S40-44. https://doi.org/10.1111/j.1528-1157.2000.tb06048.x
  19. Rodriguez-Moreno A, Sihra TS. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J Physiol. 2004;557:733-745. https://doi.org/10.1113/jphysiol.2004.065029
  20. Watts AE, Jefferys JG. Effects of carbamazepine and baclofen on 4-aminopyridine-induced epileptic activity in rat hippocampal slices. Br J Pharmacol. 1993;108:819-823. https://doi.org/10.1111/j.1476-5381.1993.tb12884.x
  21. Fernandez de Sevilla D, Garduno J, Galvan E, Buno W. Calciumactivated afterhyperpolarizations regulate synchronization and timing of epileptiform bursts in hippocampal CA3 pyramidal neurons. J Neurophysiol . 2006;96:3028-3041. https://doi.org/10.1152/jn.00434.2006
  22. Chapman AG. Glutamate and epilepsy. J Nutr. 2000;130(4S Suppl):1043S-1045S. https://doi.org/10.1093/jn/130.4.1043S
  23. Bouron A. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Prog Neurobiol. 2001;63:613-635. https://doi.org/10.1016/S0301-0082(00)00053-8
  24. Malgaroli A, Tsien RW. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature. 1992;357:134-139. https://doi.org/10.1038/357134a0
  25. Manabe T, Renner P, Nicoll RA. Postsynaptic contribution to longterm potentiation revealed by the analysis of miniature synaptic currents. Nature. 1992;355:50-55. https://doi.org/10.1038/355050a0
  26. Lampl I, Schwindt P, Crill W. Reduction of cortical pyramidal neuron excitability by the action of phenytoin on persistent $Na^{+}$ current. J Pharmacol Exp Ther. 1998;284:228-237.

Cited by

  1. Beneficial Effects of Total Phenylethanoid Glycoside Fraction Isolated from Cistanche deserticola on Bone Microstructure in Ovariectomized Rats vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2370862
  2. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling vol.18, pp.4, 2018, https://doi.org/10.2174/1570159x17666191101125530
  3. Scalable Implementation of Hippocampal Network on Digital Neuromorphic System towards Brain-Inspired Intelligence vol.10, pp.8, 2018, https://doi.org/10.3390/app10082857
  4. Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer vol.21, pp.1, 2018, https://doi.org/10.1186/s12935-021-01890-3