DOI QR코드

DOI QR Code

Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and ∆Ψm across mitochondrial inner membrane

  • Lee, Ji Hyung (Department of Physiology, Jeju National University) ;
  • Amarsanaa, Khulan (Department of Physiology, Jeju National University) ;
  • Wu, Jinji (Department of Physiology, Jeju National University) ;
  • Jeon, Sang-Chan (Department of Physiology, Jeju National University) ;
  • Cui, Yanji (Department of Physiology, Jeju National University) ;
  • Jung, Sung-Cherl (Department of Physiology, Jeju National University) ;
  • Park, Deok-Bae (Department of Histology, Jeju National University) ;
  • Kim, Se-Jae (Department of Biology, Jeju National University) ;
  • Han, Sang-Heon (College of Applied Life Science SARI, Jeju National University) ;
  • Kim, Hyun-Wook (Department of Anatomy, College of Medicine, Korea University) ;
  • Rhyu, Im Joo (Department of Anatomy, College of Medicine, Korea University) ;
  • Eun, Su-Yong (Department of Physiology, Jeju National University)
  • Received : 2017.11.09
  • Accepted : 2018.02.22
  • Published : 2018.05.01

Abstract

Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (${\Delta}{\psi}_m$). Therefore, pharmacological manipulation of ${\Delta}{\psi}_m$ can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ${\Delta}{\psi}_m$ against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity ($100{\mu}M$, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate ($100{\mu}M$)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of $Ca^{2+}$ ($5{\mu}M$). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ${\Delta}{\psi}_m$ were completely abolished in $K^+-free$ medium on pure isolated mitochondria. Taken together, results demonstrate that $K^+$ influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial $K^+$ influx is probably mediated, at least in part, by activation of mitochondrial $K^+$ channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.

Keywords

References

  1. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99-163. https://doi.org/10.1152/physrev.00013.2006
  2. Duchen MR. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. 2012;464:111-121. https://doi.org/10.1007/s00424-012-1112-0
  3. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990;258:C755-786. https://doi.org/10.1152/ajpcell.1990.258.5.C755
  4. Ishida H, Hirota Y, Genka C, Nakazawa H, Nakaya H, Sato T. Opening of mitochondrial K(ATP) channels attenuates the ouabaininduced calcium overload in mitochondria. Circ Res. 2001;89:856-858. https://doi.org/10.1161/hh2201.100341
  5. Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L. Mitochondrial $Ca^{2+}$ overload underlies Ab oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One. 2008;3:e2718. https://doi.org/10.1371/journal.pone.0002718
  6. Valero RA, Senovilla L, Nunez L, Villalobos C. The role of mitochondrial potential in control of calcium signals involved in cell proliferation. Cell Calcium. 2008;44:259-269. https://doi.org/10.1016/j.ceca.2007.12.002
  7. Wu JJ, Cui Y, Yang YS, Jung SC, Hyun JW, Maeng YH, Park DB, Lee SR, Kim SJ, Eun SY. Mild mitochondrial depolarization is involved in a neuroprotective mechanism of citrus sunki peel extract. Phytother Res. 2013;27:564-571. https://doi.org/10.1002/ptr.4745
  8. Yamamoto Y, Shioda N, Han F, Moriguchi S, Nakajima A, Yokosuka A, Mimaki Y, Sashida Y, Yamakuni T, Ohizumi Y, Fukunaga K. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res. 2009;1295:218-229. https://doi.org/10.1016/j.brainres.2009.07.081
  9. Yabuki Y, Ohizumi Y, Yokosuka A, Mimaki Y, Fukunaga K. Nobiletin treatment improves motor and cognitive deficits seen in MPTPinduced Parkinson model mice. Neuroscience. 2014;259:126-141. https://doi.org/10.1016/j.neuroscience.2013.11.051
  10. Onozuka H, Nakajima A, Matsuzaki K, Shin RW, Ogino K, Saigusa D, Tetsu N, Yokosuka A, Sashida Y, Mimaki Y, Yamakuni T, Ohizumi Y. Nobiletin, a citrus flavonoid, improves memory impairment and $A{\beta}$ pathology in a transgenic mouse model of Alzheimer's disease. J Pharmacol Exp Ther. 2008;326:739-744. https://doi.org/10.1124/jpet.108.140293
  11. Nagase H, Omae N, Omori A, Nakagawasai O, Tadano T, Yokosuka A, Sashida Y, Mimaki Y, Yamakuni T, Ohizumi Y. Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities. Biochem Biophys Res Commun. 2005;337:1330-1336. https://doi.org/10.1016/j.bbrc.2005.10.001
  12. Cui Y, Wu J, Jung SC, Park DB, Maeng YH, Hong JY, Kim SJ, Lee SR, Kim SJ, Kim SJ, Eun SY. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull. 2010;33:1814-1821. https://doi.org/10.1248/bpb.33.1814
  13. Choi SY, Hwang JH, Ko HC, Park JG, Kim SJ. Nobiletin from citrus fruit peel inhibits the DNA-binding activity of NF-kappaB and ROS production in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2007;113:149-155. https://doi.org/10.1016/j.jep.2007.05.021
  14. Eun SY, Jung SJ, Park YK, Kwak J, Kim SJ, Kim J. Effects of capsaicin on $Ca^{2+}$ release from the intracellular $Ca^{2+}$ stores in the dorsal root ganglion cells of adult rats. Biochem Biophys Res Commun. 2001;285:1114-1120. https://doi.org/10.1006/bbrc.2001.5272
  15. Scaduto RC Jr, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76:469-477. https://doi.org/10.1016/S0006-3495(99)77214-0
  16. Iglesias-Gonzalez J, Sanchez-Iglesias S, Beiras-Iglesias A, Soto-Otero R, Mendez-Alvarez E. A simple method for isolating rat brain mitochondria with high metabolic activity: effects of EDTA and EGTA. J Neurosci Methods. 2013;213:39-42. https://doi.org/10.1016/j.jneumeth.2012.12.005
  17. Blattner JR, He L, Lemasters JJ. Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Anal Biochem. 2001;295:220-226. https://doi.org/10.1006/abio.2001.5219
  18. Cho B, Cho HM, Jo Y, Kim HD, Song M, Moon C, Kim H, Kim K, Sesaki H, Rhyu IJ, Kim H, Sun W. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun. 2017;8:15754. https://doi.org/10.1038/ncomms15754
  19. Cui Y, Park JY, Wu J, Lee JH, Yang YS, Kang MS, Jung SC, Park JM, Yoo ES, Kim SH, Ahn Jo S, Suk K, Eun SY. Dieckol attenuates microglia-mediated neuronal cell death via ERK, Akt and NADPH oxidase-mediated pathways. Korean J Physiol Pharmacol. 2015;19:219-228. https://doi.org/10.4196/kjpp.2015.19.3.219
  20. Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci. 2010;1201:183-188. https://doi.org/10.1111/j.1749-6632.2010.05634.x
  21. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial $Ca^{2+}$ and ROS. Front Biosci (Landmark Ed). 2009;14:1197-1218.
  22. Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009;61:134-143. https://doi.org/10.1002/iub.155
  23. Testai L, Martelli A, Marino A, D'Antongiovanni V, Ciregia F, Giusti L, Lucacchini A, Chericoni S, Breschi MC, Calderone V. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochem Pharmacol. 2013;85:1634-1643. https://doi.org/10.1016/j.bcp.2013.03.018
  24. Saponara S, Testai L, Iozzi D, Martinotti E, Martelli A, Chericoni S, Sgaragli G, Fusi F, Calderone V. (+/-)-Naringenin as large conductance $Ca^{2+}$-activated $K^{+}$ ($BK_{Ca}$) channel opener in vascular smooth muscle cells. Br J Pharmacol. 2006;149:1013-1021.
  25. Bednarczyk P, Kicinska A, Jarmuszkiewicz W, Debowska R, Szewczyk A. Flavonoids as natural modulators of mitochondrial potassium channel. Biophys J. 2017;112:405a-406a.

Cited by

  1. Discovery of Nobiletin from Citrus Peel as a Potent Inhibitor of β-Amyloid Peptide Toxicity vol.11, pp.11, 2019, https://doi.org/10.3390/nu11112648
  2. The Application of Citrus folium in Breast Cancer and the Mechanism of Its Main Component Nobiletin: A Systematic Review vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/2847466
  3. Nobiletin Exhibits Neuroprotective Effects against Mitochondrial Complex I Inhibition via Regulating Apoptotic Signaling vol.30, pp.1, 2018, https://doi.org/10.5607/en20051