DOI QR코드

DOI QR Code

FREE AND NEARLY FREE CURVES FROM CONIC PENCILS

  • Received : 2017.06.27
  • Accepted : 2017.10.25
  • Published : 2018.05.01

Abstract

We construct some infinite series of free and nearly free curves using pencils of conics with a base locus of cardinality at most two. These curves have an interesting topology, e.g. a high degree Alexander polynomial that can be explicitly determined, a Milnor fiber homotopy equivalent to a bouquet of circles, or an irreducible translated component in the characteristic variety of their complement. Monodromy eigenspaces in the first cohomology group of the corresponding Milnor fibers are also described in terms of explicit differential forms.

Keywords

References

  1. M. Amram, D. Garber, and M. Teicher, Fundamental groups of tangent conic-line arrangements with singularities up to order 6, Math. Z. 256 (2007), no. 4, 837-870. https://doi.org/10.1007/s00209-007-0109-4
  2. E. Artal Bartolo and A. Dimca, On fundamental groups of plane curve complements, Ann. Univ. Ferrara Sez. VII Sci. Mat. 61 (2015), no. 2, 255-262. https://doi.org/10.1007/s11565-015-0231-x
  3. S. Bannai and H. Tokunaga, Geometry of bisections of elliptic surfaces and Zariski N-plets for conic arrangements, Geom. Dedicata 178 (2015), 219-237. https://doi.org/10.1007/s10711-015-0054-z
  4. N. Budur and M. Saito, Jumping coefficients and spectrum of a hyperplane arrangement, Math. Ann. 347 (2010), no. 3, 545-579. https://doi.org/10.1007/s00208-009-0449-y
  5. A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, New York, 1992.
  6. A. Dimca, Characteristic varieties and constructible sheaves, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 18 (2007), no. 4, 365-389.
  7. A. Dimca, Freeness versus maximal global Tjurina number for plane curves, Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 1, 161-172. https://doi.org/10.1017/S0305004116000803
  8. A. Dimca, Hyperplane Arrangements, Universitext, Springer, Cham, 2017.
  9. A. Dimca, Curve arrangements, pencils, and Jacobian syzygies, Michigan Math. J. 66 (2017), no. 2, 347-365. https://doi.org/10.1307/mmj/1490639821
  10. A. Dimca and M. Saito, Koszul complexes and spectra of projective hypersurfaces with isolated singularities, arXiv:1212.1081,
  11. A. Dimca and G. Sticlaru, On the exponents of free and nearly free projective plane curves, Rev. Mat. Complut. 30 (2017), no. 2, 259-268. https://doi.org/10.1007/s13163-017-0228-3
  12. A. Dimca and G. Sticlaru, A computational approach to Milnor fiber cohomology, Forum Math. 29 (2017), no. 4, 831-846.
  13. A. Dimca and G. Sticlaru, Computing the monodromy and pole order filtration on Milnor fiber cohomology of plane curves, arXiv: 1609.06818.
  14. A. Dimca and G. Sticlaru, Computing Milnor fiber monodromy for some projective hypersurfaces, arXiv: 1703.07146.
  15. A. A. du Plessis and C. T. C. Wall, Application of the theory of the discriminant to highly singular plane curves, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 2, 259-266. https://doi.org/10.1017/S0305004198003302
  16. M. Falk and S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves, Compos. Math. 143 (2007), no. 4, 1069-1088. https://doi.org/10.1112/S0010437X07002722
  17. R. V. Gurjar and A. J. Parameswaran, Open surfaces with non-positive Euler characteristic, Compositio Math. 99 (1995), no. 3, 213-229.
  18. A. J. de Jong and J. H. M. Steenbrink, Proof of a conjecture of W. Veys, Indag. Math. (N.S.) 6 (1995), no. 1, 99-104. https://doi.org/10.1016/0019-3577(95)98203-N
  19. P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992.
  20. A. Ploski, A bound for the Milnor number of plane curve singularities, Cent. Eur. J. Math. 12 (2014), no. 5, 688-693.
  21. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265-291.
  22. M. Saito, Multiplier ideals, b-function, and spectrum of a hypersurface singularity, Compos. Math. 143 (2007), no. 4, 1050-1068. https://doi.org/10.1112/S0010437X07002916
  23. M. Saito, Bernstein-Sato polynomials and graded Milnor algebras for projective hyper-surfaces with weighted homogeneous isolated singularities, arXiv:1609.04801.
  24. M. Saito, Roots of Bernstein-Sato polynomials of homogeneous polynomials with 1-dimensional singular loci, arXiv:1703.05741.
  25. H. Schenck and O. Tohaneanu, Freeness of conic-line arrangements in ${\mathbb{P}}^2$, Comment. Math. Helv. 84 (2009), no. 2, 235-258.
  26. J. Shin, A bound for the Milnor sum of projective plane curves in terms of GIT, J. Korean Math. Soc. 53 (2016), no. 2, 461-473. https://doi.org/10.4134/JKMS.2016.53.2.461
  27. A. Simis and O. Tohaneanu, Homology of homogeneous divisors, Israel J. Math. 200 (2014), no. 1, 449-487. https://doi.org/10.1007/s11856-014-0025-3
  28. H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), no. 1, 159-179. https://doi.org/10.1007/BF01389197
  29. J. Valles, Free divisors in a pencil of curves, J. Singul. 11 (2015), 190-197.
  30. W. Veys, Structure of rational open surfaces with non-positive Euler characteristic, Math. Ann. 312 (1998), no. 3, 527-548. https://doi.org/10.1007/s002080050234
  31. C. T. C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 63, Cambridge University Press, Cambridge, 2004.