DOI QR코드

DOI QR Code

Surface Protection Obtained by Anodic Oxidation of New Ti-Ta-Zr Alloy

  • Vasilescu, C. (Institute of Physical Chemistry Ilie Murgulescu of Romanian Academy) ;
  • Drob, S.I. (Institute of Physical Chemistry Ilie Murgulescu of Romanian Academy) ;
  • Calderon Moreno, J.M. (Institute of Physical Chemistry Ilie Murgulescu of Romanian Academy) ;
  • Drob, P. (Institute of Physical Chemistry Ilie Murgulescu of Romanian Academy) ;
  • Popa, M. (Institute of Physical Chemistry Ilie Murgulescu of Romanian Academy) ;
  • Vasilescu, E. (Institute of Physical Chemistry Ilie Murgulescu of Romanian Academy)
  • Received : 2017.12.18
  • Accepted : 2018.03.02
  • Published : 2018.04.30

Abstract

A new 80Ti-15Ta-5Zr wt% alloy surface was protected by anodic oxidation in phosphoric acid solution. The protective oxide layer (TiO2, ZrO2 and Ta suboxides and thickness of 15.5 nm) incorporated $PO{_4}^{3-}$ ions from the solution, according to high resolution XPS spectra. The AFM analysis determined a high roughness with SEM detected pores (20 - 50 nm). The electrochemical studies of bare and anodically oxidized Ti-15Ta-5Zr alloy in Carter-Brugirard saliva of different pH values and saliva with 0.05M NaF, pointed to a nobler surface for the protected alloy, with a thicker electrodeposited oxide layer acting as a barrier against aggressive ions. The oxidized alloy significantly decreased corrosion current densities and total quantity of ions released into the oral environment in comparison with the bare one, at higher polarisation resistance and protective capacity of the electrodeposited layer. The impedance data revealed a bi-layered oxidation film formed by: a dense, compact, barrier layer in contact with the metallic substrate, decreasing the potential gradient across the metal/oxide layer/solution interface, reducing the anodic dissolution and a more permissive, porous layer in contact with the electrolyte. The open circuit potential for protected alloy shifted to nobler values, with thickening of the oxidation film signifying long-term protection.

Keywords

References

  1. S. Guo, A. Chu, H. Wu, C. Cai, and X. Qu, J. Alloy Compd., 597, 211 (2014). https://doi.org/10.1016/j.jallcom.2014.01.087
  2. I. Cvijovic-Alagic, Z. Cvijovic, S. Mitrovic, V. Panic, and M. Rakin, Corros. Sci., 53, 796 (2011). https://doi.org/10.1016/j.corsci.2010.11.014
  3. S. L. Assis and I. Costa, Mater. Corros., 58, 329 (2007). https://doi.org/10.1002/maco.200604027
  4. A. Robin, O. A. S. Carvalho, S. G. Schneider, and S. Schneider, Mater. Corros., 59, 929 (2008). https://doi.org/10.1002/maco.200805014
  5. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog. Mater. Sci., 54, 397 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004
  6. D. M. Gordin, D. Busardo, A. Cimpean, C. Vasilescu, D. Hoche, S. I. Drob, V. Mitran, M. Cornen, and T. Gloriant, Mat. Sci. Eng. C, 33, 4173 (2013). https://doi.org/10.1016/j.msec.2013.06.008
  7. R. Palanivelu, S. Kalainathan, and A. Ruban Kumar, Ceram. Int., 40, 7745 (2014). https://doi.org/10.1016/j.ceramint.2013.12.116
  8. A. Nakahira, T. Kubo, and C. Numako, ACS Appl. Mater. Inter., 2, 2611 (2010). https://doi.org/10.1021/am1004442
  9. R. Roest, B. A. Latella, G. Heness, and B. Ben-Nissan, Surf. Coat. Technol., 205, 3520 (2011). https://doi.org/10.1016/j.surfcoat.2010.12.030
  10. R. B. Heimann, Surf. Coat. Technol., 233, 27 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.013
  11. C. Vasilescu, P. Drob, E. Vasilescu, I. Demetrescu, D. Ionita, M. Prodana, and S. I. Drob, Corros. Sci., 53, 992 (2011). https://doi.org/10.1016/j.corsci.2010.11.033
  12. S. J. Li, R. Yang, M. Ninomi, Y. L. Hao, and Y. Y. Cui, Biomaterials, 25, 2525 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.039
  13. C. Vasilescu, S. I. Drob, P. Osiceanu, M. Anastasescu, J. M. Calderon Moreno, P. Drob, and E. Vasilescu, J. Nanomater., Volume 2014 Article ID 369034, p. 12 (2014).
  14. V. W. Leung and B. W. Darvell, J. Dent., 25, 475 (1997). https://doi.org/10.1016/S0300-5712(96)00068-1
  15. R. Baboian, Corrosion tests and standards: application and interpretation, 2nd ed., pp. 1 - 882, ASTM International, West Conshohochen, Baltimore (2005).
  16. R. Van Noort, J. Mater. Sci., 22, 3801 (1987). https://doi.org/10.1007/BF01133326
  17. J. M. Calderon Moreno, E. Vasilescu, P. Drob, P. Osiceanu, C. Vasilescu, S. I. Drob, and M. Popa, Mater. Sci. Eng. B, 178, 1195 (2013). https://doi.org/10.1016/j.mseb.2013.07.006
  18. E. Vasilescu, P. Drob, D. Raducanu, I. Cinca, D. Mareci, J. M. Calderon Moreno, M. Popa, C. Vasilescu, and J. C. Mirza Rosca, Corros. Sci., 51, 2885 (2009). https://doi.org/10.1016/j.corsci.2009.08.014
  19. J. M. Calderon Moreno, M. Popa, S. Ivanescu, C. Vasilescu, S. I. Drob, E. I. Neacsu, and M. V. Popa, Met. Mater. Int., 20, 177 (2014). https://doi.org/10.1007/s12540-013-6031-x
  20. C. Vasilescu, S. I. Drob, J. M. Calderon Moreno, P. Osiceanu, M. Popa, E. Vasilescu, M. Marcu, P. Drob, Corros. Sci., 93, 310 (2015). https://doi.org/10.1016/j.corsci.2015.01.038
  21. M. T. Woldemedhin, D. Raabe, and A. W. Hassel, Electrochim. Acta, 82, 324 (2012). https://doi.org/10.1016/j.electacta.2012.06.029
  22. C. Sola, A. Amorim, A. Espias, S. Capelo, J. Fernandes, L. Proenca, L. Sanchez, and I. Fonseca, Int. J. Electrochem. Sci., 8, 406 (2013).
  23. G. Sheela, M. Ramasamy, C. R. K. Rao, and M. Pushpavanam, Bull. Electrochem., 17, 347 (2001).