DOI QR코드

DOI QR Code

Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties

활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향

  • Choi, Yun Jeong (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Young-Seak (Department of applied chemical engineering, Chungnam National University) ;
  • Im, Ji Sun (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 최윤정 (한국화학연구원(KRICT) 탄소산업선도연구단) ;
  • 이영석 (충남대학교 응용화학공학부) ;
  • 임지선 (한국화학연구원(KRICT) 탄소산업선도연구단)
  • Received : 2018.02.14
  • Accepted : 2018.03.15
  • Published : 2018.06.10

Abstract

In this study, PAN (polyacrylonitrile) based activated carbon fibers were prepared by water vapor activation method which is a physical activation method. Activation was performed with temperature and time as parameters. When the activation temperature reached 700, 750 and $800^{\circ}C$, the activation was carried out under the condition of a water vapor flow rate of 200 ml/min. In order to analyze the pore structure of activated carbon fibers, the specific surface area ($S_{BET}$) was measured by the adsorption/desorption isotherm of nitrogen gas and AFM analysis was performed for the surface analysis. Tensile tests were also conducted to investigate the effect of the pore structure on mechanical properties of fibers. As a result, the $S_{BET}$ of fibers after the activation showed a value of $448{\sim}902m^2/g$, the tensile strength decreased 58.16~84.92% and the tensile modulus decreased to 69.81~83.89%.

본 연구에서는 물리적 활성화법인 수증기 활성화법을 이용하여 PAN (Polyacrylonitrile)계 활성탄소섬유를 제조하였다. 활성화는 온도와 시간을 변수로 하였으며, 활성화 온도(700, 750, $800^{\circ}C$)에 도달하였을 때 200 mL/min의 수증기 유량의 조건으로 PAN 탄소섬유의 활성화를 진행하였다. 제조된 활성탄소섬유의 기공구조를 분석하기 위하여 질소가스의 흡 탈 등온선을 통한 비표면적($S_{BET}$) 측정과 표면분석을 위한 AFM 분석을 실시하였다. 또한 인장시험을 실시하여 활성화 결과 형성된 기공구조가 섬유의 기계적 특성에 미치는 영향을 고찰하였다. 그 결과, 활성화 후 섬유의 비표면적($S_{BET}$)은 $448{\sim}902m^2/g$의 값을 나타냈으며, 인장강도는 58.16~84.92%, 탄성계수는 69.81~83.89%의 감소를 보였다.

Keywords

References

  1. National Air Pollutants Emission Service, Emissions of pollutants in 2014, http://airemiss.nier.go.kr (2014).
  2. M. T. Bae, Water pollution at Paldang water source 'golf course.camping ground⋅water leisure facility' 108 places detection, Asia Today, 2017.09.20., http://www.asiatoday.co.kr/view.php?key=2017 0920010009420.
  3. S. Mor, K. Chhoden, P. Negi, and K. Ravindra, Utilization of nano-alumina and activated charcoal for phosphate removal from wastewater, Environ. Nanotechnol. Monit. Manag., 7, 15-23 (2017). https://doi.org/10.1016/j.enmm.2016.11.006
  4. H. K. Son, S. Sivakumar, M. J. Rood, and B. J. Kim, Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth, J. Hazard. Mater., 301, 27-34 (2016). https://doi.org/10.1016/j.jhazmat.2015.08.040
  5. D. Zhao, Y. Yu, and J. P. Chen, Fabrication and testing of zirconium-based nanoparticle-doped activated carbon fiber for enhanced arsenic removal in water, RSC Adv., 6, 27020-27030 (2016). https://doi.org/10.1039/C5RA25030G
  6. S. H. Pak, M. J. Jeon, and Y. W. Jeon, Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal, Int. Biodeterior. Biodegradation, 113, 195-200 (2016). https://doi.org/10.1016/j.ibiod.2016.04.019
  7. S. Pap, J. Radonic, S. Trifunovic, D. Adamovic, I. Mihajlovic, M. V. Miloradov, and M. T. Sekulic, Evaluation of the adsorption po- tential of eco-friendly activated carbon prepared from cherry ker- nels for the removal of $Pb^{2+}$, $Cd^{2+}$ and $Ni^{2+}$ from aqueous wastes, J. Environ. Manage., 184, 297-306 (2016). https://doi.org/10.1016/j.jenvman.2016.09.089
  8. R. Yavuz, H. Akyildiz, N. Karatepe, and E. Cetinkaya, Influence of preparation conditions on porous structures of olive stone activated by $H_3PO_4$, Fuel Process. Technol., 91, 80-87 (2010). https://doi.org/10.1016/j.fuproc.2009.08.018
  9. Y. S. Lee, Porous carbon, Phys. High Technol., 13, 18-23 (2004).
  10. R. H. Gumus and I. Okpeku, Production of activated carbon and characterization from snail shell waste (Helix pomatia), Adv. Chem. Eng. Sci., 5, 51-61 (2015). https://doi.org/10.4236/aces.2015.51006
  11. C. R. Park, S. J. Kang, and C. H. Yoon, Activated carbon fibers as a pioneering problem solver of environmental problems, Polym. Sci. Technol., 7, 130-139 (1996).
  12. T. Lee, C. H. Ooi, R. Othman, and F. Y. Yeoh, Activated carbon fiber - The hybrid of carbon fiber and activated carbon, Rev. Adv. Mater. Sci., 36, 118-136 (2014).
  13. L. Wang, Y. Yao, Z. Zhang, L. Sun, W. Lu, W. Chen, and H. Chen, Activated carbon fibers as an excellent partner of Fenton catalyst for dyes decolorization by combination of adsorption and oxidation, Chem. Eng., 251, 348-354 (2014). https://doi.org/10.1016/j.cej.2014.04.088
  14. M. Song, B. Jin, R. Xiao, L. Yang, Y. Wu, Z. Zhong, and Y. Huang, The comparison of two activation techniques to prepare activated carbon from corn cob, Biomass Bioenergy, 48, 250-256 (2013). https://doi.org/10.1016/j.biombioe.2012.11.007
  15. Y. Huang, E. Ma, and G. Zhao, Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers, Ind. Crops Prod., 69, 447-455 (2015). https://doi.org/10.1016/j.indcrop.2015.03.002
  16. J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, and A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation, Carbon, 42, 1367-1370 (2004). https://doi.org/10.1016/j.carbon.2004.01.013
  17. D. W. Kim, H. S. Kil, K. Nakabayashi, S. H. Yoon, and J. Miyawaki, Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model, Carbon, 114, 98-105 (2017). https://doi.org/10.1016/j.carbon.2016.11.082
  18. F. C. Tai, C. Wei, S. H. Chang, and W. S. Chen, Raman and X-ray diffraction analysis on unburned carbon powder refined from fly ash, J. Raman Spectrosc., 41, 933-937 (2010). https://doi.org/10.1002/jrs.2532
  19. H. J. Lee, J. S. Won, S. C. Lim, T. S. Lee, J. Y. Yoon, and S. G. Lee, Preparation and characterization of PAN-based carbon fiber with carbonization temperature, Text. Sci. Eng., 53, 103-108 (2016). https://doi.org/10.12772/TSE.2016.53.103
  20. N. Yusof, D. Rana, A. F. Ismail, and T. Matsuura, Microstructure of polyacrylonitrile-based activated carbon fibers prepared from solvent-free coagulation process, J. Appl. Res. Technol., 14, 54-61 (2016). https://doi.org/10.1016/j.jart.2016.02.001

Cited by

  1. Pore Structure Characteristics of Foam Composite with Active Carbon vol.13, pp.18, 2020, https://doi.org/10.3390/ma13184038