DOI QR코드

DOI QR Code

Two-mode Fiber with a Reduced Mode Overlap for Uncoupled Mode-division Multiplexing in C+L Band

  • 투고 : 2018.02.20
  • 심사 : 2018.06.07
  • 발행 : 2018.06.25

초록

We proposed a two-mode fiber (TMF) design that can effectively reduce the mode overlap between $LP_{01}$ and $LP_{11}$ modes by using a W-shaped index profile core structure, which is a primary concern in uncoupled mode division multiplexing (MDM). TMF has a three-layered core structure; central circular core, inner cladding, and outer ring core. We confirmed that in an optimal structure the $LP_{01}$ mode was highly confined to the central core while the $LP_{11}$ mode was guided along the outer ring core to result in a minimum overlap integral. We used a full-vectorial finite element method to estimate effective index, differential group delay (DGD), confinement loss, chromatic dispersion, and mode overlap controlling the parameters of the W-shaped structure. The optimized W-profile fiber provided optical characteristics within the ITU-T recommended standards over the entire C+L band.

키워드

참고문헌

  1. L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, and O. Mattes, "A throughput-optimized optical network for data-intensive computing," IEEE Micro 34, 52-63 (2014). https://doi.org/10.1109/MM.2014.77
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  3. L. Ma, K. Tsujikawa, N. Hanzawa, S. Aozasa, S. Nozoe, and F. Yamamoto, "Design and fabrication of low loss hole-assisted few-mode fibers with consideration of surface imperfection of air holes," J. Lightw. Technol. 34, 5164-5169 (2016). https://doi.org/10.1109/JLT.2016.2603167
  4. L. Gruner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle Jr, and B. Palsdottir, "Few mode transmission fiber with low DGD, low mode coupling, and low loss," J. Lightw. Technol. 30, 3693-3698 (2012). https://doi.org/10.1109/JLT.2012.2227243
  5. P. Sillard, M. Bigot-Astruc, and D. Molin, "Few-mode fibers for mode-division-multiplexed systems," J. Lightw. Technol. 32, 2824-2829 (2014). https://doi.org/10.1109/JLT.2014.2312845
  6. K.-P. Ho and J. M. Kahn, "Mode coupling and its impact on spatially multiplexed systems," Opt. Fiber Telecommun. VI 17, 1386-1392 (2013).
  7. D. M. Marom and M. Blau, "Switching solutions for WDM-SDM optical networks," IEEE Commun. Mag. 53, 60-68 (2015).
  8. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, and P. J. Winzer, "Mode-division multiplexing over 96 km of few-mode fiber using coherent $6{\times}6$ MIMO processing," J. Lightw. Technol. 30, 521-531 (2012). https://doi.org/10.1109/JLT.2011.2174336
  9. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, and P. Sillard, "Two mode transmission at $2{\times}100Gb/s$, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer," Opt. Express 19, 16593-16600 (2011). https://doi.org/10.1364/OE.19.016593
  10. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, "Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler," in Proc. Optical Fiber Communication Conference (Optical Society of America, 2011), p. OWA4.
  11. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, "Few-mode fiber for uncoupled mode-division multiplexing transmissions," in Proc. European Conference and Exposition on Optical Communications (Optical Society of America, 2011), p. Tu. 5. LeCervin. 7.
  12. N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, "Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope," Furukawa Rev. 22, 1-6 (2002).
  13. N. Riesen, J. D. Love, and J. W. Arkwright, "Few-mode elliptical-core fiber data transmission," IEEE Photon. Technol. Lett. 24, 344 (2012). https://doi.org/10.1109/LPT.2011.2178825
  14. A. W. Snyder, "Coupled-mode theory for optical fibers," J. Opt. Soc. Am. 62, 1267-1277 (1972). https://doi.org/10.1364/JOSA.62.001267
  15. K. Nakajima, P. Sillard, D. Richardson, M.-J. Li, R.-J. Essiambre, and S. Matsuo, "Transmission media for an SDM-based optical communication system," IEEE Commun. Mag. 53, 44-51 (2015).
  16. Y.-M. Jung, S.-U. Alam, and D. J. Richardson, "All-fiber spatial mode selective filter for compensating mode dependent loss in MDM transmission systems," in Proc. Optical Fiber Communication Conference (Optical Society of America, 2015), p. W2A. 13.
  17. Y. S. Lee, C. G. Lee, Y. Jung, M.-K. Oh, and S. Kim, "Highly birefringent and dispersion compensating photonic crystal fiber based on double line defect core," J. Opt. Soc. Korea 20, 567-574 (2016). https://doi.org/10.3807/JOSK.2016.20.5.567
  18. Characteristics of a Cut-Off Shifted, Single-Mode Fibre and Cable, ITU-T Std. G.654, Oct. (2012).
  19. B. Brixner, "Refractive-index interpolation for fused silica," J. Opt. Soc. Am. 57, 674-676 (1967). https://doi.org/10.1364/JOSA.57.000674
  20. K. Oh and U.-C. Paek, Silica optical fiber technology for devices and components: design, fabrication, and international standards (John Wiley & Sons, 2012).
  21. M. Park, H. E. Arabi, S. Lee, and K. Oh, "Independent control of birefringence and chromatic dispersion in a photonic crystal fiber using two hollow ring defects," Opt. Commun. 284, 4914-4919 (2011). https://doi.org/10.1016/j.optcom.2011.06.043
  22. Corning, "Corning SMF-28 optical fiber product information," http://ece466.groups.et.byu.net/notes/smf28.pdf.
  23. O. Bands, B. Laurent, and G. Draka, "From O to L: The future of optical-wavelength bands," Broadband Properties, 83-85 (2008).
  24. F. Ferreira, D. Fonseca, and H. Silva, "Design of few-mode fibers with arbitrary and flattened differential mode delay," IEEE Photon. Technol. Lett. 25, 438-441 (2013). https://doi.org/10.1109/LPT.2013.2241047
  25. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. Yamamoto, "Design of three-spatial-mode ring-core fiber," J. Lightw. Technol. 32, 1337-1343 (2014). https://doi.org/10.1109/JLT.2014.2304732
  26. J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. Liu, "Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core," Photon. Res. 5, 261-266 (2017). https://doi.org/10.1364/PRJ.5.000261
  27. M. Bigot-Astruc, L. Provost, G. Krabshuis, P. Dhenry, and P. Sillard, "$125{\mu}m$ glass diameter single-mode fiber with Aeff of $155{\mu}m$ 2," in Proc. Optical Fiber Communication Conference (Optical Society of America, 2011), p. OTuJ2.
  28. K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. Koshiba, "Large effective-area few-mode multicore fiber," IEEE Photon. Technol. Lett. 24, 1941-1944 (2012). https://doi.org/10.1109/LPT.2012.2219618
  29. Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable, ITU-T G.655, Nov. (2009).