DOI QR코드

DOI QR Code

The effect of μ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn

  • Kim, Yoo Rim (Department of Physiology, Seoul National University College of Medicine) ;
  • Shim, Hyun Geun (Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Chang-Eop (Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Sang Jeong (Department of Physiology, Seoul National University College of Medicine)
  • Received : 2018.01.02
  • Accepted : 2018.04.09
  • Published : 2018.07.01

Abstract

The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of ${\mu}$-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective ${\mu}$-opioid agonist, [$D-Ala^2$, $NMe-Phe^4$, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by $K^+$ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.

Keywords

References

  1. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267-284. https://doi.org/10.1016/j.cell.2009.09.028
  2. Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin. Science. 1986;234:358-361. https://doi.org/10.1126/science.3764416
  3. Kumazawa T, Perl ER. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol. 1978;177:417-434. https://doi.org/10.1002/cne.901770305
  4. Light AR, Perl ER. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol. 1979;186:117-131. https://doi.org/10.1002/cne.901860202
  5. Zeilhofer HU, Wildner H, Yevenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev. 2012;92:193-235. https://doi.org/10.1152/physrev.00043.2010
  6. Spike RC, Todd AJ, Johnston HM. Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol. 1993;335:320-333. https://doi.org/10.1002/cne.903350303
  7. Todd AJ, McKenzie J. GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience. 1989;31:799-806. https://doi.org/10.1016/0306-4522(89)90442-9
  8. Todd AJ, Sullivan AC. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol. 1990;296:496-505. https://doi.org/10.1002/cne.902960312
  9. Todd AJ, Spike RC. The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol. 1993;41:609-645. https://doi.org/10.1016/0301-0082(93)90045-T
  10. Furue H, Katafuchi T, Yoshimura M. Sensory processing and functional reorganization of sensory transmission under pathological conditions in the spinal dorsal horn. Neurosci Res. 2004;48:361-368. https://doi.org/10.1016/j.neures.2003.12.005
  11. Cui L, Kim YR, Kim HY, Lee SC, Shin HS, Szabo G, Erdelyi F, Kim J, Kim SJ. Modulation of synaptic transmission from primary afferents to spinal substantia gelatinosa neurons by group III mGluRs in GAD65-EGFP transgenic mice. J Neurophysiol. 2011;105:1102-1111. https://doi.org/10.1152/jn.00108.2010
  12. Lu Y, Perl ER. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J Neurosci. 2003;23:8752-8758. https://doi.org/10.1523/JNEUROSCI.23-25-08752.2003
  13. Yasaka T, Kato G, Furue H, Rashid MH, Sonohata M, Tamae A, Murata Y, Masuko S, Yoshimura M. Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro. J Physiol. 2007;581:603-618. https://doi.org/10.1113/jphysiol.2006.123919
  14. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22:6724-6731. https://doi.org/10.1523/JNEUROSCI.22-15-06724.2002
  15. Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci. 2006;26:1833-1843. https://doi.org/10.1523/JNEUROSCI.4584-05.2006
  16. Furst S. Transmitters involved in antinociception in the spinal cord. Brain Res Bull. 1999;48:129-141. https://doi.org/10.1016/S0361-9230(98)00159-2
  17. Cho PS, Lee HK, Lee SH, Im JZ, Jung SJ. DAMGO modulates twopore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord. Korean J Physiol Pharmacol. 2016;20:525-531. https://doi.org/10.4196/kjpp.2016.20.5.525
  18. Wu SY, Ohtubo Y, Brailoiu GC, Dun NJ. Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices. Br J Pharmacol. 2003;140:1088-1096. https://doi.org/10.1038/sj.bjp.0705534
  19. Omote K, Kitahata LM, Collins JG, Nakatani K, Nakagawa I. The antinociceptive role of mu- and delta-opiate receptors and their interactions in the spinal dorsal horn of cats. Anesth Analg. 1990;71:23-28.
  20. Czlonkowski A, Costa T, Przewlocki R, Pasi A, Herz A. Opiate receptor binding sites in human spinal cord. Brain Res. 1983;267:392-396. https://doi.org/10.1016/0006-8993(83)90897-1
  21. Chang KJ, Cuatrecasas P. Multiple opiate receptors. Enkephalins and morphine bind to receptors of different specificity. J Biol Chem. 1979;254:2610-2618.
  22. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ, Loh HH, Law PY, Wessendorf MW, Elde R. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci. 1995;15:3328-3341. https://doi.org/10.1523/JNEUROSCI.15-05-03328.1995
  23. Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM. Pre- and postsynaptic distribution of mu, delta and kappa opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res. 1990;521:15-22. https://doi.org/10.1016/0006-8993(90)91519-M
  24. Marker CL, Lujan R, Colon J, Wickman K. Distinct populations of spinal cord lamina II interneurons expressing G-protein-gated potassium channels. J Neurosci. 2006;26:12251-12259. https://doi.org/10.1523/JNEUROSCI.3693-06.2006
  25. Law PY, Wong YH, Loh HH. Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol. 2000;40:389-430. https://doi.org/10.1146/annurev.pharmtox.40.1.389
  26. Yaksh TL. Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol Scand. 1997;41:94-111. https://doi.org/10.1111/j.1399-6576.1997.tb04623.x
  27. Glaum SR, Miller RJ, Hammond DL. Inhibitory actions of delta 1-, delta 2-, and mu-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord. J Neurosci. 1994;14:4965-4971. https://doi.org/10.1523/JNEUROSCI.14-08-04965.1994
  28. Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol. 1999;518:803-813. https://doi.org/10.1111/j.1469-7793.1999.0803p.x
  29. Yaksh TL. Opiate receptors for behavioral analgesia resemble those related to the depression of spinal nociceptive neurons. Science. 1978;199:1231-1233. https://doi.org/10.1126/science.204008
  30. Chen J, Sandkuhler J. Induction of homosynaptic long-term depression at spinal synapses of sensory a delta-fibers requires activation of metabotropic glutamate receptors. Neuroscience. 2000;98:141-148. https://doi.org/10.1016/S0306-4522(00)00080-4
  31. Ruscheweyh R, Sandkuhler J. Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol. 2002;541:231-244. https://doi.org/10.1113/jphysiol.2002.017756
  32. Kerchner GA, Zhuo M. Presynaptic suppression of dorsal horn inhibitory transmission by mu-opioid receptors. J Neurophysiol. 2002;88:520-522. https://doi.org/10.1152/jn.2002.88.1.520
  33. Schneider SP, Eckert WA 3rd, Light AR. Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J Neurophysiol. 1998;80:2954-2962. https://doi.org/10.1152/jn.1998.80.6.2954
  34. Kemp T, Spike RC, Watt C, Todd AJ. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience. 1996;75:1231-1238. https://doi.org/10.1016/0306-4522(96)00333-8
  35. Zheng J, Lu Y, Perl ER. Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents. J Physiol. 2010;588:2065-2075. https://doi.org/10.1113/jphysiol.2010.188052

Cited by

  1. Spinal microglial β‐endorphin signaling mediates IL‐10 and exenatide‐induced inhibition of synaptic plasticity in neuropathic pain vol.27, pp.10, 2018, https://doi.org/10.1111/cns.13694