DOI QR코드

DOI QR Code

한반도 겨울철 기온의 월별 통계 예측 모형 구축 및 검증

Development and Evaluation of Statistical Prediction Model of Monthly-Mean Winter Surface Air Temperature in Korea

  • 한보름 (서울대학교 지구환경과학부) ;
  • 임유나 (서울대학교 지구환경과학부) ;
  • 김혜진 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Han, Bo-Reum (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lim, Yuna (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Hye-Jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
  • 투고 : 2018.03.07
  • 심사 : 2018.05.29
  • 발행 : 2018.06.30

초록

The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering $El-Ni{\tilde{n}}o$ Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

키워드

참고문헌

  1. Ahn, J.-B., J.-H. Ryu, E.-H. Cho, J.-Y. Park, and S.-B. Ryoo, 1997: A study of correlations between air-temperature and precipitation in Korea and SST over the Tropical Pacific. Asia-Pac. J. Atmos. Sci., 33, 487-495 (in Korean with English abstract).
  2. Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, doi:10.5067/8GQ8LZQVL0VL.
  3. Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345-348. https://doi.org/10.1029/1998GL900321
  4. Cohen, J., M. Barlow, P. J. Kushner, and K. Saito, 2007: Stratosphere-troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 5335-5343. https://doi.org/10.1175/2007JCLI1725.1
  5. Cohen, J., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.
  6. Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627-637, doi:10.1038/NGEO2234.
  7. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  8. Elsner, J. B., and C. P. Schmertmann, 1994: Assessing forecast skill through cross validation. Wea. Forecasting, 9, 619-624. https://doi.org/10.1175/1520-0434(1994)009<0619:AFSTCV>2.0.CO;2
  9. Furtado, J. C., J. L. Cohen, and E. Tziperman, 2016: The combined influences of autumnal snow and sea ice on Northern Hemisphere winters. Geophys. Res. Lett., 43, 3478-3485, doi:10.1002/2016GL068108.
  10. Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2
  11. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707.
  12. Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast verification: a practitioner's guide in atmospheric science. John Wiley & Sons. 254 pp.
  13. Karl, T. R., P. Y. Groisman, R. W. Knight, and R. R. Heim Jr., 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6, 1327-1344. https://doi.org/10.1175/1520-0442(1993)006<1327:RVOSCA>2.0.CO;2
  14. Kim, B. M., E. Jung, G. H. Lim, and H. K. Kim, 2014: Analysis on winter atmospheric variability related to Arctic warming. Atmosphere, 24, 131-140, doi:10.14191/Atmos.2014.24.2.131 (in Korean with English abstract).
  15. Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010: Statistical relationship between two types of El Nino events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467-474, doi:10.1007/s13143-010-0027-y.
  16. Kutner, M. H., C. J. Nachtsheim, and J. Neter, 2004: Applied linear regression models. 4th edition, McGraw Hill, New York.
  17. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407-4443. https://doi.org/10.1029/2002JD002670
  18. Robinson, D. A., T. W. Estilow, and NOAA CDR Program, 2012: NOAA Climate Date Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. NOAA National Centers for Environmental Information.
  19. Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 7824-7845, doi:10.1175/JCLI-D-15-0169.1.
  20. Tivy, A., B. Alt, S. Howell, K. Wilson, and J. Yackel, 2007: Long-range prediction of the shipping season in Hudson Bay: A statistical approach. Wea. Forecasting, 22, 1063-1075. https://doi.org/10.1175/WAF1038.1
  21. Thompson, D. W., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297-1300. https://doi.org/10.1029/98GL00950
  22. Thompson, D. W., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric Connection to Northern Hemisphere Wintertime Weather: Implications for Prediction. J. Climate, 15, 1421-1428. https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2
  23. Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784-812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
  24. Wang, D., C. Wang, X. Yang, and J. Lu, 2005: Winter northern hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. Geophys. Res. Lett., 32, L16706.
  25. Zhang, P., Y. Wu, and K. L. Smith, 2018: Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Clim. Dyn., 50, 527-539, doi:10.1007/s00382-017-3624-y.