DOI QR코드

DOI QR Code

Development of the Global-Korean Aviation Turbulence Guidance (Global-KTG) System Using the Global Data Assimilation and Prediction System (GDAPS) of the Korea Meteorological Administration (KMA)

기상청 전지구 수치예보모델을 이용한 전지구 한국형 항공난류 예측시스템(G-KTG) 개발

  • Lee, Dan-Bi (Department of Atmospheric Sciences, Yonsei University) ;
  • Chun, Hye-Yeong (Department of Atmospheric Sciences, Yonsei University)
  • Received : 2018.04.23
  • Accepted : 2018.05.23
  • Published : 2018.06.30

Abstract

The Global-Korean aviation Turbulence Guidance (G-KTG) system is developed using the operational Global Data Assimilation and Prediction System of Korea Meteorological Administration with 17-km horizontal grid spacing. The G-KTG system provides an integrated solution of various clear-air turbulence (CAT) diagnostics and mountain-wave induced turbulence (MWT) diagnostics for low [below 10 kft (3.05 km)], middle [10 kft (3.05 km) - 20 kft (6.10 km)], and upper [20 kft (6.10 km) - 50 kft (15.24 km)] levels. Individual CAT and MWT diagnostics in the G-KTG are converted to a 1/3 power of energy dissipation rate (EDR). 12-h forecast of the G-KTG is evaluated using 6-month period (2016.06~2016.11) of in-situ EDR observation data. The forecast skill is calculated by area under curve (AUC) where the curve is drawn by pairs of probabilities of detection of "yes" for moderate-or-greater-level turbulence events and "no" for null-level turbulence events. The AUCs of G-KTG for the upper, middle, and lower levels are 0.79, 0.69, and 0.63, respectively. Comparison of the upper-level G-KTG with the regional-KTG in East Asia reveals that the forecast skill of the G-KTG (AUC = 0.77) is similar to that of the regional-KTG (AUC = 0.79) using the Regional Data Assimilation and Prediction System with 12-km horizontal grid spacing.

Keywords

References

  1. Dutton, J., and H. A. Panofsky, 1970: Clear air turbulence: A mystery may be unfolding. Science, 167, 937-944. https://doi.org/10.1126/science.167.3920.937
  2. Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150-165. https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2
  3. Ellrod, G. P., and J. A. Knox, 2010: Improvements to an operational clear-air turbulence diagnostic index by addition of a divergence trend term. Wea. Forecasting, 25, 789-798, doi:10.1175/2009WAF2222290.1.
  4. Frehlich, R., and R. D. Sharman, 2004a: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev., 132, 2308-2324. https://doi.org/10.1175/1520-0493(2004)132<2308:EOTFNW>2.0.CO;2
  5. Frehlich, R., and R. D. Sharman, 2004b: Estimates of upper level turbulence based on second order structure functions derived from numerical weather prediction model output. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., 4.13. [Available online at https://ams.confex.com/ams/pdfpapers/81831.pdf.].
  6. Frehlich, R., R. Sharman, F. Vandenberghe, W. Yu, Y. Liu, J. Knievel, and G. Jumper, 2010: Estimates of $C_n^2$ from numerical weather prediction model output and comparison with thermosonde data. J. Appl. Meteor. Climatol., 49, 1742-1755, doi:10.1175/2010JAMC2350.1.
  7. Gill, P. G., and P. Buchanan, 2014: An ensemble based turbulence forecasting system. Meteor. Appl., 21, 12-19, doi:10.1002/met.1373.
  8. Kaplan, M. L., and Coauthors, 2006: Characterizing the severe turbulence environments associated with commercial aviation accidents: A Real-Time Turbulence Model (RTTM) designed for the operational prediction of hazardous aviation turbulence environments. Meteor. Atmos. Phys., 94, 235-270. https://doi.org/10.1007/s00703-005-0181-4
  9. Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 2381-2403, doi:10.1175/2010JAMC2449.1.
  10. Kim, J.-H., and H.-Y. Chun, 2011: Development of the Korean mid- and upper-level aviation Turbulence Guidance (KTG) system using the regional Unified Model. Atmosphere, 21, 497-506 (in Korean with English abstract).
  11. Kim, J.-H., and H.-Y. Chun, 2012a: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.
  12. Kim, J.-H., and H.-Y. Chun, 2012b: Development of the Korean aviation Turbulence Guidance (KTG) system using the operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs). J. Kor. Soc. Aviat. Aeron., 20, 76-83, doi:10.12985/ksaa.2012.20.4.076.
  13. Kim, J.-H., H.-Y. Chun, W. Jang, and R. D. Sharman, 2009: A study of forecast system for clear-air turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) system. Atmosphere, 19, 269-287 (in Korean with English abstract).
  14. Kim, J.-H., H.-Y. Chun, R. D. Sharman, and T. L. Keller, 2011: Evaluations of upper-level turbulence diagnostics performance using the Graphical Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia. J. Appl. Meteor. Climatol., 50, 1936-1951, doi:10.1175/JAMC-D-10-05017.1.
  15. Knox, J. A., 1997: Possible mechanisms of clear-air turbulence in strongly anticyclonic flows. Mon. Wea. Rev., 125, 1251-1259. https://doi.org/10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2
  16. Knox, J. A., D. W. McCann, and P. D. Williams, 2008: Application of the Lighthill-Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci., 65, 3292-3304. https://doi.org/10.1175/2008JAS2477.1
  17. Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 3885-3908. https://doi.org/10.1175/JAS3574.1
  18. Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteorol. Soc., 93, 499-515, doi:10.1175/BAMS-D-11-00062.1.
  19. Lee, D.-B., and H.-Y. Chun, 2014: Development of the seasonal Korean aviation Turbulence Guidance (KTG) system using the regional Unified Model of the Korea Meteorological Administration (KMA). Atmosphere, 24, 235-243, doi:10.14191/Atmos.2014.24.2.235 (in Korean with English abstract).
  20. Lee, D.-B., and H.-Y. Chun, 2015: Development of the Korean Peninsula-Korean aviation Turbulence Guidance (KPKTG) system using the Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration (KMA). Atmosphere, 25, 367-374, doi:10.14191/Atmos.2015.25.2.367 (in Korean with English abstract).
  21. Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291-303.
  22. McCann, D. W., 2001: Gravity waves, unbalanced flow, and aircraft clear air turbulence. Natl. Wea. Dig., 25, 3-14.
  23. Min, J.-S., H.-Y. Chun, and J.-H. Kim, 2011: An investigation of synoptic condition for clear-air turbulence (CAT) events occurred over South Korea. Atmosphere, 21, 69-83 (in Korean with English abstract).
  24. Reap, R. M., 1996: Probability forecasts of clear-air-turbulence for the contiguous US. National Weather Service Office of Meteorology Tech. Procedures Bull. 430, 15 pp [Available online at http://www.nws.noaa.gov/mdl/pubs/Documents/TechProcBulls/TPB_430.pdf.].
  25. Sharman, R., and T. Lane, Eds., 2016: Aviation Turbulence: Processes, Detection, Prediction. Springer, 523 pp.
  26. Sharman, R., and J. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting nonconvective turbulence. J. Appl. Meteor. Climatol., 56, 317-337, doi:10.1175/JAMC-D-16-0205.1.
  27. Sharman, R., and S. B. Trier, 2018: Influences of gravity waves on Convectively Induced Turbulence (CIT): A review. Pure Appl. Geophys., doi:10.1007/s00024-018-1849-2.
  28. Sharman, R., C. Tebaldi, G. Wienner, and J. K Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268-287. https://doi.org/10.1175/WAF924.1
  29. Sharman, R., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, doi:10.1029/2012GL051996.
  30. Sharman, R., L. B. Cornman, G. Meymaris, and J. Pearson, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416-1432, doi:10.1175/JAMC-D-13-0329.1.
  31. Strauss, L., S. Serafin, S. Haimov, and V. Grubisic, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements. Q. J. R. Meteorol. Soc., 141, 3207-3225, doi:10.1002/qj.2604.
  32. Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of Clear-Air Turbulence (CAT). Mon. Wea. Rev., 140, 2477-2496, doi:10.1175/MWR-D-11-00353.1.
  33. Tung, K. K., and W. W. Orlando, 2003: The $k^{-3}$ and $k^{-5/3}$ energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824-835. https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2