1차원 무기 반도체 신 물질 재료의 연구 개발 동향

  • 류학기 (아주대학교 신소재공학)
  • Published : 2018.06.30

Abstract

In order to overcome the problems of existing low-dimensional materials (carbon nanotubes, graphene, transition metal dichalcogenides, etc) researches on new 1D materials have been studied. In the case of $LiMo_3Se_3$ and $Mo_6S_{9-x}I_x$, continuous researches have been carried out for 3D bulk synthesis and atomic scale dispersion. Recently, quantum confinement effect of $LiMo_3Se_3$ and bio-stability of $Mo_6S_{9-x}I_x$ have been proven and various applications have started to be studied. In addition, device application results using new 1D materials such as $Sb_2Se_3$ (optoelectronic devices using the property of effectively reducing exciton decay due to no dangling bond) and $VS_4$ (electrochemical energy storage using the space between 1-D nanostructures) have been reported very importantly. Therefore, it can be claimed that it has reached a very important time to find and synthesize new 1D materials and to report various characteristics not existing.

Keywords

References

  1. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, "Recent Advances in Two-Dimensional Materials beyond Graphene," ACS nano, 9, 11509-539 (2015). https://doi.org/10.1021/acsnano.5b05556
  2. Q. Tang and Z. Zhou, "Graphene-analogous lowdimensional materials," Prog. Mater. Sci., 58, 1244-1315 (2013). https://doi.org/10.1016/j.pmatsci.2013.04.003
  3. P. Miro, M. Audiffred, and T. Heine, "An atlas of two-dimensional materials," Chem. Soc. Rev., 43, 6537-554 (2014). https://doi.org/10.1039/C4CS00102H
  4. O. V. Yazyev and Y. P. Chen, "Polycrystalline graphene and other two-dimensional materials," Nat. Nanotech., 9, 755-67 (2014). https://doi.org/10.1038/nnano.2014.166
  5. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science, 319, 1229-32 (2008). https://doi.org/10.1126/science.1150878
  6. D. C. Elias, R. R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, and A. Geim, "Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane," Science, 323, 610-13 (2009). https://doi.org/10.1126/science.1167130
  7. L. Tapaszto, G. Dobrik, P. Lambin, and L. P. Biro, "Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography," Nat. Nanotech., 3, 397-401 (2008). https://doi.org/10.1038/nnano.2008.149
  8. A. C. Ford, J. C. Ho, Y.-L. Chueh, Y.-C. Tseng, Z. Fan, J. Guo, J. Bokor, and A. Javey, "Diameter-Dependent Electron Mobility of InAs Nanowires," Nano let., 9, 360-65 (2009). https://doi.org/10.1021/nl803154m
  9. F. Schwierz, "Graphene transistors," Nat. Nanotech., 5, 487-96 (2010). https://doi.org/10.1038/nnano.2010.89
  10. B. Xu, T. Kaneko, Y. Shibuta, and T. Kato, "Preferential synthesis of (6,4) single-walled carbon nanotubes by controlling oxidation degree of Co catalyst," Sci. Rep., 7, 11149 (2017). https://doi.org/10.1038/s41598-017-11712-0
  11. B. Messer, J. H. Song, M. Huang, Y. Wu, F. Kim, P. Yang, "Surfactant-Induced Mesoscopic Assemblies of Inorganic Molecular Chains," Adv. Mater., 12, 1526-28 (2000). https://doi.org/10.1002/1521-4095(200010)12:20<1526::AID-ADMA1526>3.0.CO;2-B
  12. A. Heidelberg, H. Bloe$\ss$, J. W. Schultze, C. J. Booth, E. T. Samulski, and J. J. Boland, "Electronic Properties of $LiMo_3Se_3$-Nanowires and $Mo_3Se_3$--Nanowire-Networks for Nanoscale Electronic Devices," Z. Phys. Chem., 217, 573-85 (2003). https://doi.org/10.1524/zpch.217.5.573.20451
  13. X. Qi and F. E. Osterloh, "Chemical Sensing with $LiMo_3Se_3$ Nanowire Films," J. Am. Chem. Soc., 127, 7666-67 (2005). https://doi.org/10.1021/ja050960r
  14. M. Allen, E. M. Sabio, X. Qi, B. Nwengela, M. S. Islam, and F. E. Osterloh, "Metallic $LiMo_3Se_3$ Nanowire Film Sensors for Electrical Detection of Metal Ions in Water," Langmuir, 24, 7031-37 (2008). https://doi.org/10.1021/la8004085
  15. A. Meden, A. Kodre, J. Padeznik Gomilsek, I. Arcon, I. Vilfan, D. Vrbanic, A. Mrzel, and D. Mihailovic, "Atomic and electronic structure of $Mo_6S_{9-x}I_x$ nanowires," Nanotechnology, 16, 1578-83 (2005). https://doi.org/10.1088/0957-4484/16/9/029
  16. D. Vrbanic, M. Remskar, A. Jesih, A. Mrzel, P. Umek, M. Ponikvar, B. Jancar, A. Meden, B. Novosel, S. Pejovnik, P. Venturini, J. C. Coleman, and D. Mihailovic, "Air-stable monodispersed $Mo_6S_3I_6$ nanowires," Nanotechnology, 15, 635-38 (2004). https://doi.org/10.1088/0957-4484/15/5/039
  17. M. Devetak, B. Bercic, M. Uplaznik, A. Mrzel, and D. Mihailovic," $Mo_6S_3I_6$ Nanowire Network Vapor Pressure Chemisensors," Chem. Mater., 20, 1773-77 (2008). https://doi.org/10.1021/cm703074f
  18. H. Lin, H. Cheng, L. Liu, Z. Zhu, Y. Shao, P. Papakonstantinou, D. Mihailovic, M. Li, "Thionin attached to a gold electrode modified with selfassembly of $Mo_6S_{9-x}I_x$ nanowires for amplified electrochemical detection of natural DNA," Biosens. Bioelectron., 26, 1866-70 (2011). https://doi.org/10.1016/j.bios.2010.01.035
  19. Y. Zhou, L.Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, and J. Tang, "Thin-film $Sb_2Se_3$ photovoltaics with oriented one-dimensional ribbons and benign grain boundaries," Nat. Photonics, 9, 409-15 (2015). https://doi.org/10.1038/nphoton.2015.78
  20. M. N. Kozlova, Y. V. Mironov, E. D. Grayfer, A. I. Smolentsev, V. I. Zaikovskii, N. A. Nebogatikova, T. Yu. Podlipskaya, and V. E. Fedorov, "Synthesis, Crystal Structure, and Colloidal Dispersions of Vanadium Tetrasulfide ($VS_4$)," Chem. Eur. J., 21, 4639-45 (2015). https://doi.org/10.1002/chem.201406428
  21. G. Yang, B. Zhang, J. Feng, H. Wang, M. Ma, K. Huang, J. Liu, S. Madhavi, Z. Shen, and Y. Huang, "High-Crystallinity Urchin‑like $VS_4$ Anode for High-Performance Lithium-Ion Storage," ACS Appl. Mater. Interfaces, 10, 14727-34 (2018). https://doi.org/10.1021/acsami.8b01876